ON QUASI-COMPACT PSEUDO-RESOLVENTS

J. G. BASTERFIELD Emmanuel College

1. Introduction

Let $\{R_{\lambda}: \lambda > 0\}$ be a family of continuous linear operators on a Banach space such that

(1)
$$\frac{\|\lambda R_{\lambda}\| \leq 1}{R_{\lambda} - R_{\mu} + (\lambda - \mu)R_{\lambda}R_{\mu}} = 0$$
 for $\lambda, \mu > 0.$

Suppose that, for some $\alpha > 0$, αR_{α} is quasi-compact; that is, there exist a positive integer *m*, a linear *D* with ||D|| < 1, and a compact *K* such that $(\alpha R_{\alpha})^m = K + D$. Then we shall show that λR_{λ} is quasi-compact for all $\lambda > 0$. (In the special case where $\{R_{\lambda}\}$ is the resolvent family of a strongly continuous Markov semigroup on ℓ_1 , the result is proved in the accompanying paper by David Williams [1].)

2. A lemma on pseudo-resolvents

LEMMA. Suppose $\{S_{\lambda}: \lambda > 0\}$ is a family of elements of a Banach algebra with identity (of norm 1) such that

(2)
$$\begin{cases} \|\lambda S_{\lambda}\| \leq 1\\ S_{\lambda} - S_{\mu} + (\lambda - \mu)S_{\lambda}S_{\mu} = 0 \end{cases} \quad \text{for} \quad \lambda, \mu > 0.$$

Then for all $\lambda, \mu > 0$,

(i) the points z_{λ} in $\sigma(S_{\lambda})$ (the spectrum of S_{λ}) are precisely those points of the form

(3)
$$z_{\lambda} = \frac{z_{\mu}}{1 - (\mu - \lambda)z_{\mu}} \text{ where } z_{\mu} \in \sigma(S_{\mu}),$$

and (ii) $\sigma(\mu S_{\mu}) \subseteq \{z: |z - \frac{1}{2}| \leq \frac{1}{2}\}.$

PROOF. By repeated substitution of $S_{\lambda} = (1 + (\mu - \lambda)S_{\lambda})S_{\mu}$ into itself, we get

(4)
$$S_{\lambda} = \sum_{n=0}^{N} (\mu - \lambda)^{n} S_{\mu}^{n+1} + (\mu - \lambda)^{N+1} S_{\lambda} S_{\mu}^{N+1}.$$

Therefore, provided that $(\mu - \lambda)^N ||S^N_{\mu}|| \to 0$ as $N \to \infty$,

(5)
$$S_{\lambda} = \sum_{n=0}^{\infty} (\mu - \lambda)^n S_{\mu}^{n+1}.$$

This work was supported by the Science Research Council.