ALMOST SURE BEHAVIOR OF SUMS OF INDEPENDENT RANDOM VARIABLES AND MARTINGALES

VOLKER STRASSEN University of Goettingen

1. Introduction and summary

Toss a fair coin independently n times and let S_n be the number of heads minus the number of tails. Khintchine [26] proved the law of the iterated logarithm

(1)
$$\limsup_{n} (2n \log \log n)^{-1/2} S_n = 1, \qquad \text{a.s.}$$

Thus if the supremum of an empty set of natural numbers is understood to be 0, then

(2)
$$\hat{T}:=\sup\{n: (2n\log\log n)^{-1/2}S_n \ge c\}$$

is a random variable for c > 1 representing the speed of the upper half of the law of the iterated logarithm.

In the first part of this paper we will be mainly concerned with the distribution of \hat{T} and of similar random variables. Our research has been initiated by a remark of Professor Alfred Rényi to the effect that $E\hat{T} = \infty$. Here is a simple proof:

(3)
$$E\hat{T} \ge E$$
 (number of times *n* such that $(2n \log \log n)^{-1/2}S_n \ge c$)
= $\sum_n \Pr \{(2n \log \log n)^{-1/2}S_n \ge c\} = \infty$

by normal approximation.

Unfortunately, this argument seems to have a very limited scope. Replace, for instance, $(2n \log \log n)^{-(1/2)}$ in the definition of \hat{T} by $(2n(\log n + \log \log n))^{-(1/2)}$ and put c = 1. Then $E\hat{T} = \infty$ (as will follow from corollary 4.7 of this paper), but

(4)
$$\sum_{n} \Pr \{ (2n(\log n + \log \log n))^{-1/2} S_n \ge 1 \} < \infty.$$

Moreover, the argument (3) fails if applied to moments other than the mean. In order to state our first result in a more suggestive way, let us introduce a

Habilitationsschrift zur Erlangung der *venia legendi* für Mathematik an der Universität Erlangen-Nurnberg. This paper was prepared while the author was Habilitandenstipendiat of the Deutsche Forschungsgemeinschaft.