SOME CHARACTERIZATION PROBLEMS IN STATISTICS

YU. V. PROHOROV V. A. Steklov Institute, Moscow

1. Introduction

In this paper we shall discuss problems connected with tests of the hypothesis that a theoretical distribution belongs to a given class, for instance, the class of normal distributions, or uniform distribution or Poisson distribution. The statistical data consist of a large number of small samples (see [1]).

2. Reduction to simple hypotheses

Let $(\mathfrak{X}, \mathfrak{A})$ be a measurable space $(\mathfrak{X} \text{ is a set and } \mathfrak{A} \text{ is a } \sigma\text{-algebra of subsets of } \mathfrak{X})$. Let \mathfrak{O} be a set of probability distributions defined on \mathfrak{A} , let $(\mathfrak{Y}, \mathfrak{B})$ be another measurable space, and let $Y = f(X), X \in \mathfrak{X}$, be a measurable mapping of $(\mathfrak{X}, \mathfrak{A})$ into $(\mathfrak{Y}, \mathfrak{B})$. With this mapping every distribution P induces on \mathfrak{B} a corresponding distribution which we shall denote by Q_P^Y . We will be interested in the mappings (statistics) Y which possess the following two properties:

(1) Q_P^{Y} is the same for all $P \in \mathcal{O}$; in this case we will simply write $Q_{\mathcal{O}}^{Y}$.

(2) If for some P' on \mathfrak{A} one has $Q_{P'}^{Y} = Q_{\mathfrak{P}}^{Y}$, then $P' \in \mathfrak{P}$.

Sometimes it is expedient to formulate requirement (2) in the weakened form: (2a) If $P' \in \mathcal{O}' \supset \mathcal{O}$ and $Q_{P'}^{Y} = Q_{\mathcal{O}}^{Y}$, then $P' \in \mathcal{O}$. In other words, we can assert in this case only that the equation $Q_{P'}^{Y} = Q_{\mathcal{O}}^{Y}$ implies $P' \in \mathcal{O}$ for some a priori restrictions $(P' \in \mathcal{O}')$ on P'.

If Y is a statistic satisfying (1) and (2), then it is clear that the hypothesis that the distribution of X belongs to class \mathcal{O} is equivalent to the hypothesis that the distribution of Y is equal to $Q_{\mathcal{V}}^{Y}$.

Let us consider some examples. In these examples $(\mathfrak{X}, \mathfrak{A})$ is an *n*-dimensional Euclidean space of points $X = (x_1, \cdots, x_n)$ with the σ -algebra of Borel sets. The distributions belonging to \mathcal{O} have a probability density of the form

$$(2.1) p(x_1, \theta)p(x_2, \theta) \cdots p(x_n, \theta)$$

where p is a one-dimensional density and θ a parameter taking values in a parameter space.

EXAMPLE 1 (I. N. Kovalenko [2]). Translation parameter. Let $p(x; \theta) = p(x - \theta)$, with $-\infty < \theta < \infty$ (additive type). Here obviously it is necessary to take the (n - 1)-dimensional statistic $Y = (x_1 - x_n, \dots, x_{n-1} - x_n)$. Of course, we can take any uniquely invertible function, for example $Y' = (x_1 - \overline{x}, \dots, x_n - \overline{x})$ where $\overline{x} = (1/n) \sum_{i=1}^{n} x_k$.