WEAK LIMITS OF SEQUENCES OF BAYES PROCEDURES IN ESTIMATION THEORY

R. H. FARRELL CORNELL UNIVERSITY

1. Introduction

Let (X, \mathcal{B}, μ) be a totally σ -finite measure space and $\{f(\cdot, \omega), \omega \in \Omega\}$ a family of (generalized) density functions relative to (X, \mathcal{B}, μ) . If $a \in \Omega$ and b is a $(randomized)$ decision procedure for the decision space \mathfrak{D} , we borrow Stein's [5] notation and write

(1.1)
$$
K(a, b) = \int W(a, t)b(x, dt)f(x, a)\mu(dx),
$$

where $W(a, t)$ is the measure of loss if $t \in \mathfrak{D}$ is decided and $a \in \Omega$ is the case.

In the sequel we will always suppose that Ω and $\mathfrak D$ are locally compact metric spaces and will make suitable measurability assumptions about W , b , f . As is known from the work of Wald [7], under fairly liberal assumptions an admissible procedure b is Bayes in the wide sense. That is, we may find sequences $\{b_n, n \geq 1\}$ and $\{\lambda_n, n \geq 1\}$ such that if $n \geq 1$, b_n is Bayes relative to $\lambda_n, K(a, b_n) \leq K(a, b)$ for all a in the support of λ_n , and $\lim_{n\to\infty} \int (K(a, b) - K(a, b_n))\lambda_n(da) = 0.$ Under convexity assumptions on W one may suppose $b = \text{weak } \lim_{n \to \infty} b_n$, as is explained in the appendix.

If $\mathfrak{D} = (-\infty, \infty)$ and $(\partial W/\partial t)$ is well-defined, then with suitable hypotheses the statement, b_n is Bayes relative to λ_n , is equivalent to the statement, for almost all x, for all t, in the support of $b_n(x, \cdot)$,

(1.2)
$$
0 = \int \left(\frac{\partial W}{\partial t}\right)(\omega, t) f(x, \omega) \lambda_n(d\omega).
$$

If t is vector-valued, (1.2) may be replaced by a system of equations.

Logically, given that b is Bayes in the wide sense relative to $\{b_n, n \geq 1\}$ and $\{\lambda_n, n \geq 1\}$, one would hope to determine a measure $\lambda(\cdot)$ such that for almost all x, for all t in the support of $b(x, \cdot)$,

(1.3)
$$
0 = \int \left(\frac{\partial W}{\partial t}\right)(\omega, t) f(x, \omega) \lambda(d\omega).
$$

Research sponsored in part by the Office of Naval Research under Contract Number Nonr 401(50).