ON A CLASS OF INFINITESIMAL GENERATORS AND THE INTEGRATION PROBLEM OF EVOLUTION EQUATIONS

KÔSAKU YOSIDA UNIVERSITY OF TOKYO

1. Introduction

The theory of semigroups of bounded linear operators deals with exponential functions in infinite dimensional function spaces. It has been used, as an operator-theoretical substitute for the Laplace transform method, in the integration problem of temporally homogeneous evolution equations, especially of diffusion equations and wave equations (see Hille and Phillips [5] and Yosida [20], [21]).

The purpose of my paper is to call attention to a class of semigroups which is characterized by either one of the three mutually equivalent conditions to be explained below; one of them reads that the semigroup T_t satisfies

(1)
$$\lim_{t \downarrow 0} t \left\| \frac{d}{dt} T_t \right\| < \infty.$$

The semigroups arising from the integration in L_2 of temporally homogeneous diffusion equations belong to this class. And the unique continuation theorem of diffusion equations, inaugurated by Yamabe and Itô [6] may be explained by the time-like analyticity of the corresponding semigroups. The situation has an intimate connection with the theory of analytical vectors published recently by Nelson [14]. There is a procedure to obtain semigroups of our class. Let A be the infinitesimal generator of a contraction semigroup. We can define, following Bochner [3], Feller [4], Phillips [15], and Balakrishnan [1], the fractional powers $-(-A)^{\alpha}$ of A and the semigroups generated by them belong to our class. Balakrishnan gave an interesting application of the operator $-(-A)^{1/2}$ to Hille's reduced Cauchy problem for equations $d^2u/dt^2 + Au = 0$.

Tanabe [19] has recently devised an ingenious method of integration of temporally inhomogeneous evolution equations in Banach spaces: du/dt = A(t)u. He assumes, for fixed t, that A(t) is the infinitesimal generator of a semigroup of our class. He further assumes a certain regularity condition with respect to t of A(t) which is the same as that introduced by Kato [8] for the integration of such equations. Under these conditions, Tanabe proved that the solution may be obtained by successive approximation starting with the first approximation $\exp[(t-s)A(s)]$. In this way, he has shown that Levi's classical construction