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1. Introduction

The theory of semigroups of bounded linear operators deals with exponential
functions in infinite dimensional function spaces. It has been used, as an oper-
ator-theoretical substitute for the Laplace transform method, in the integration
problem of temporally homogeneous evolution equations, especially of diffusion
equations and wave equations (see Hille and Phillips [5] and Yosida [20], [21]).

The purpose of my paper is to call attention to a class of semigroups which is
characterized by either one of the three mutually equivalent conditions to be
explained below; one of them reads that the semigroup 7', satisfies
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The semigroups arising from the integration in L, of temporally homogeneous
diffusion equations belong to this class. And the unique continuation theorem
of diffusion equations, inaugurated by Yamabe and Ité [6] may be explained
by the time-like analyticity of the corresponding semigroups. The situation has
an intimate connection with the theory of analytical vectors published recently
by Nelson [14]. There is a procedure to obtain semigroups of our class. Let 4
be the infinitesimal generator of a contraction semigroup. We can define, follow-
ing Bochner (3], Feller [4], Phillips [15], and Balakrishnan [1], the fractional
powers — (—A4)* of A and the semigroups generated by them belong to our class.
Balakrishnan gave an interesting application of the operator — (— A)'2 to Hille’s
reduced Cauchy problem for equations d*u/di? + Au = 0.

Tanabe [19] has recently devised an ingenious method of integration of
temporally inhomogeneous evolution equations in Banach spaces: du/dt = A(f)u.
He assumes, for fixed ¢, that A (?) is the infinitesimal generator of a semigroup of
our class. He further assumes a certain regularity condition with respect to ¢ of
A(¢) which is the same as that introduced by Kato [8] for the integration of such
equations. Under these conditions, Tanabe proved that the solution may be
obtained by successive approximation starting with the first approximation
exp [(t — s)A(s)]. In this way, he has shown that Levi’s classical construction
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