OCCUPATION TIME LAWS FOR BIRTH AND DEATH PROCESSES

SAMUEL KARLIN AND JAMES McGREGOR STANFORD UNIVERSITY

1. Introduction

Let X(t) with $t \ge 0$ be a (Borel) measurable stationary Markov process whose state space is a metric space \mathcal{E} and whose transition probability function is

(1)
$$P(t; x, E) = P\{X(t+s) \in E | X(s) = x\}$$

Darling and Kac [3] studied the limiting distribution of the random variables

(2)
$$Z(t) = \int_0^t V[X(\tau)] d\tau$$

as $t \to \infty$, where V is a nonnegative measurable function. If V is the characteristic function of a set E then Z(t) is the occupation time of E.

Darling and Kac assume that

(3)
$$\int_0^\infty e^{-st} P(t;x,E) \, dt = \pi(E)h(s) + h_1(s;x,E)$$

where $h(s) \to \infty$ as $s \to 0+$ and

(4)
$$\lim_{s\to 0+} \frac{1}{h(s)} \int h_1(s; x, dy) V(y) = 0,$$

the convergence in (4) being uniform on the set $\{x; V(x) > 0\}$. They then show that the kth moment $\mu_k(t)$ of Z(t) satisfies

(5)
$$s \int_0^\infty e^{-st} \mu_k(t) dt \sim k! [\pi(E)h(s)]^k, \qquad s \to 0+.$$

Under the additional hypothesis

(6)
$$h(s) = s^{-\alpha}L\left(\frac{1}{s}\right),$$

where $0 \leq \alpha < 1$ and L(1/s) is slowly varying (see below) as $s \to 0+$, they deduce from Karamata's Tauberian theorem that

(7)
$$\lim_{t\to\infty} P\left\{\frac{Z(t)}{\pi(E)h(1/t)} \leq u\right\} = G_{\alpha}(u),$$

where G_{α} denotes the Mittag-Leffler distribution,

Prepared under contract Nonr-225(28), NR-047-109, for the Office of Naval Research.