SPECTRAL ANALYSIS OF STATIONARY GAUSSIAN PROCESSES

SHIZUO KAKUTANI YALE UNIVERSITY

1. Gauss functions

Let (Ω, \mathcal{E}, P) be a probability space, that is, $\Omega = \{\omega\}$ is a set of elements ω , and $\mathcal{E} = \{E\}$ is a sigma field of subsets E of Ω , and P(E) is a countably additive measure defined on \mathcal{E} with $P(\Omega) = 1$. We denote by $L^2(\Omega)$ the real L^2 -space over (Ω, \mathcal{E}, P) , that is, the real linear space of all real-valued \mathcal{E} -measurable functions $f(\omega)$ defined on Ω such that

(1)
$$||f||^2 = \int_{\Omega} |f(\omega)|^2 P(d\omega) < \infty.$$

Two functions from $L^2(\Omega)$ which coincide almost everywhere on Ω are identified in $L^2(\Omega)$. For any two functions $f(\omega)$ and $g(\omega)$ from $L^2(\Omega)$, their inner product (f, g) is defined by

(2)
$$(f,g) = \int_{\Omega} f(\omega)g(\omega) P(d\omega).$$

A function $x(\omega)$ from $L^2(\Omega)$ is called a *Gauss function* if either (i) $x(\omega) = 0$ almost everywhere on Ω , or (ii) there exists a positive number $\sigma > 0$ such that

(3)
$$P\{\omega|\alpha < x(\omega) < \beta\} = \frac{1}{\sqrt{2\pi\sigma}} \int_{\alpha}^{\beta} \exp\left(-\frac{u^2}{2\sigma}\right) du$$

for any real numbers α and β with $\alpha < \beta$. In the second case (ii), the function $x(\omega)$ is said to have a *Gaussian distribution* with mean 0 and variance $\sigma > 0$.

2. Gauss systems

Let $S = \{x_1(\omega), \dots, x_n(\omega)\}$ be a finite set of functions from $L^2(\Omega)$. Then S is called a *Gauss system* if the linear combination $\sum_{k=1}^{n} c_k x_k(\omega)$ is a Gauss function for any real numbers c_1, \dots, c_n . Further S is said to have an *n*-dimensional *Gaussian distribution* with mean 0 if there exists a real positive definite matrix $A = (a_{k,l} \mid k, l = 1, \dots, n)$ such that

(4)
$$P\{\omega|\alpha_k < x_k(\omega) < \beta_k, k = 1, \cdots, n\} = \left(\frac{\det A}{(2\pi)^n}\right)^{1/2} \int_{\alpha_1}^{\beta_1} \cdots \int_{\alpha_n}^{\beta_n} \exp\left[-\frac{1}{2} (Au, u)\right] du,$$

$$239$$