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1. Introduction

Consider, for example, a classical mechanical system with Lagrangian
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The wave function of the quantum mechanical system corresponding to this
classical one changes with time ¢ acecording to the Schrodinger equation
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Feynman [3] expressed this wave function ¢(¢, z) in the following integral
form, which we shall here call the Feynman integral
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where T', is the space of paths X = (z,,0 < 7 < 1) with zo = z, []. dz, is a
uniform measure on R@, and N is a normalization factor. It should be noted
that the integral ﬂ) ‘ [42/2 — U(z,)] dr is the classical action integral along the
path X. (This idea goes back to Dirac [1].) It is easy to see that (1.3) solves
(1.2) unless we require mathematical rigor. It is our purpose to define the gener-
alized measure ]|, dz./N, that is, the integral j;‘ F(X)II. dz./N, rigorously and

to prove that (1.3) solves (1.2) in case U(z) = 0 (case of no force) or U(x) = x
(case of constant force). See theorem 5.2 and theorem 5.3 below. We hope this
fact will be proved for a general U(z) with some appropriate regularity condi-
tions.

"Qur definition is also applicable to the Wiener integral; namely, using it, we
shall prove that the solution of the heat equation
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is given by .
(1.5) u(t, ) = I%T r,exp {—/(; I:% + U(zr)jldf f(xe) H dz,
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