EXAMINATION OF RESIDUALS

F. J. ANSCOMBE

PRINCETON UNIVERSITY AND THE UNIVERSITY OF CHICAGO

1. Introduction

1.1. Suppose that n given observations, y_1, y_2, \dots, y_n , are claimed to be independent determinations, having equal weight, of means $\mu_1, \mu_2, \dots, \mu_n$, such that

(1)
$$\mu_i = \sum_r a_{ir}\theta_r,$$

where $\mathbf{A} = (a_{ir})$ is a matrix of given coefficients and (θ_r) is a vector of unknown parameters. In this paper the suffix *i* (and later the suffixes *j*, *k*, *l*) will always run over the values 1, 2, \cdots , *n*, and the suffix *r* will run from 1 up to the number of parameters (θ_r) .

Let $(\hat{\theta}_r)$ denote estimates of (θ_r) obtained by the method of least squares, let (Y_i) denote the fitted values,

(2)
$$Y_i = \sum_r a_{ir} \hat{\theta}_r,$$

and let (z_i) denote the residuals,

$$(3) z_i = y_i - Y_i$$

If A stands for the linear space spanned by $(a_{i1}), (a_{i2}), \cdots$, that is, by the columns of **A**, and if \overline{A} is the complement of A, consisting of all *n*-component vectors orthogonal to A, then (Y_i) is the projection of (y_i) on A and (z_i) is the projection of (y_i) on \overline{A} . Let $\mathbf{Q} = (q_{ij})$ be the idempotent positive-semidefinite symmetric matrix taking (y_i) into (z_i) , that is,

If A has dimension $n - \nu$ (where $\nu > 0$), \overline{A} is of dimension ν and Q has rank ν . Given A, we can choose a parameter set (θ_r) , where $r = 1, 2, \dots, n - \nu$, such that the columns of A are linearly independent, and then if $\mathbf{V}^{-1} = \mathbf{A}'\mathbf{A}$ and if I stands for the $n \times n$ identity matrix (δ_{ij}) , we have

$$\mathbf{Q} = \mathbf{I} - \mathbf{A}\mathbf{V}\mathbf{A}'.$$

The trace of **Q** is

(6)
$$\sum_{i} q_{ii} = \nu.$$

Research carried out at Princeton University and in part at the Department of Statistics, University of Chicago, under sponsorship of the Logistics and Mathematical Statistics Branch, Office of Naval Research.