A NOTE ON RANDOM TRIGONO-METRIC POLYNOMIALS

R. SALEM AND A. ZYGMUND UNIVERSITY OF PARIS AND THE UNIVERSITY OF CHICAGO

1. General remarks

This note is a postscript to our paper [1]. It deals with a problem having close connection with the topics discussed there, and uses similar methods. However, to make the note more readable, we make it self-contained at the expense of a repetition of some of the arguments in [1]. For the sake of proper perspective we begin by restating some of the results of that paper.

Consider a general trigonometric polynomial of order n ,

(1.1)
$$
\frac{1}{2}a_0 + \sum_{k=1}^n (a_k \cos kx + b_k \sin kx),
$$

with, say, real coefficients. Let $\varphi_1(t), \varphi_2(t),\cdots, \varphi_n(t),\cdots$ be the Rademacher functions (1.2) $\varphi_n (t) = \text{sign} \sin 2^n \pi t$, $0 \le t \le 1$,

which represent independent random variables taking values ± 1 , each with probability 1/2. We write

(1.3)
$$
P_n(x, t) = \frac{1}{2}a_0 + \sum_{k=1}^n (a_k \cos kx + b_k \sin kx) \varphi_k(t),
$$

(1.4)
$$
M_n(t) = \max_x |P_n(x, t)|.
$$

One of the problems discussed in [1] was that of the order of magnitude of $M_n(t)$ for $n \rightarrow \infty$ and almost all t (this presupposes, of course, that the a_k and b_k are defined for all k). It turns out (see pp. 270-271 in [1]) that, if the series $\sum (a_k^2 + b_k^2)$ diverges, and

(1.5)
$$
R_n = \frac{1}{2} \sum_{k=1}^n (a_k^2 + b_k^2),
$$

then

$$
\limsup_{n \to \infty} \frac{M_n(t)}{\sqrt{R_n \log n}} \le 2
$$

for almost all t.

This result was obtained under the sole assumption that $\sum (a_k^2 + b_k^2)$ diverges. If we want to obtain an estimate for $M_n(t)$ from below we must introduce further restrictions on a_n , b_n . Write

(1.7)
$$
T_n = \sum_{k=1}^n (a_k^4 + b_k^4).
$$