RANDOM DISTRIBUTIONS WITH AN APPLICATION TO TELEPHONE ENGINEERING

ROBERT M. FORTET UNIVERSITY OF PARIS

1. General Poisson distributions

Recently, A. Blanc-Lapierre and I remarked that we were not aware of any definition of a general Poisson distribution, that is to say, of a Poisson distribution not, as usual, on the straight line or on some Euclidean space, but on a perfectly general space. Such a definition may be useful, and can be given in the following obvious way.

Let \mathcal{X} be any space of elements x, \mathcal{B} a Borel field of subsets e of \mathcal{X} , and m(e) a measure on \mathcal{B} (not necessarily bounded or finite). A random family F of elements of \mathcal{X} is a Poisson distribution on \mathcal{X} [with respect to \mathcal{B} and m(e)] if, M(e) being the number of elements of F belonging to $e \in \mathcal{B}$, we have the following properties [1]:

1) If $m(e) < +\infty$, the random variable M(e) is almost certainly finite and its distribution function is the Poisson law with parameter m(e).

2) If k is any integer and if e_1, e_2, \dots, e_k are any disjoint sets belonging to β , with $m(e_j) < +\infty, j = 1, 2, \dots, k$, the k random variables $M(e_j)$ are independent.

The classical properties of Poisson distributions on the straight line remain true. For instance, it is easy to see the following.

1) If $e \in \mathcal{B}$ with $0 < m(e) < +\infty$, then conditionally when M(e) = k, with k any integer >0, the distribution on e of the k elements of F belonging to e is statistically equivalent to the choice at random, independently, of k elements x on e, with $Pr\{x \in e'\} = m(e')/m(e)$, where e' is any subset of e belonging to \mathcal{B} .

2) Let e_t be a family of sets belonging to \mathcal{B} , $0 \leq t < +\infty$, such that (a) $e_t \subset e_\tau$ if $t < \tau$; (b) e_0 reduces to an element $x_0 \in \mathcal{X}$; (c) $m(e_t)$, as a function of t, is continuous even for $t \to +0$ with $m(e_0) = 0$. Let T be the random variable defined by the following. If t < T, no element of F belongs to e_t ; if t > T, at least one element of F belongs to e_i . The distribution function of T is

(1.1)
$$1 - e^{-m(e_i)}$$

3) Let \mathfrak{Y} be a second space, \mathcal{C} a Borel field of subsets $\omega \subset \mathfrak{Y}$, let $p(x; \omega)$ be a probability measure on \mathcal{C} corresponding to every $x \in \mathcal{X}$, and let Y(x) be a random element taking its values on \mathfrak{Y} obeying the law $p(x; \omega)$. I assume that the different Y(x) for different x are mutually independent. Let $e \in \mathcal{B}$ with $m(e) < +\infty$, let X_1, X_2, \dots, X_j , \dots be the elements of F belonging to e. Then the $Y(X_j)$ are Poisson distributed on \mathfrak{Y} (with respect to \mathcal{C}) and the mathematical expectation of the number of the $Y(X_j)$ belonging to ω is

(1.2)
$$\int_{a}^{b} p(x; \omega) m(dx).$$

This paper was prepared with partial support of the Office of Naval Research.