WIENER'S RANDOM FUNCTION, AND OTHER LAPLACIAN RANDOM FUNCTIONS

PAUL LEVY ECOLE POLYTECHNIQUE

1. An application of a formula of Wiener

1.1. Let $X(t)$ be Wiener's well known random function, defined up to an additive constant by the condition

(1.1.1)
$$
X(t) - X(t_0) = \xi \sqrt{t - t_0}, \qquad t > t_0,
$$

t being a real and normalized Laplacian (often called Gaussian) random variable. Suppose $0 \le t \le 2\pi$, $X(0) = 0$, and put

(1.1.2)
$$
X(t) = \frac{t}{2\pi} X(2\pi) + U(t).
$$

The Laplacian function $U(t)$ is completely characterized by its covariance

(1.1.3)
$$
E\{U(t) | U(t')\} = \frac{u(2\pi - v)}{2\pi}
$$

 $[u = \min(t, t'); v = \max(t, t'); 0 \le u \le v \le 2\pi]$. We may conclude that it may be represented by the almost surely convergent Fourier series

(1.1.4)
$$
U(t) = \sum_{1}^{\infty} \frac{1}{n \sqrt{\pi}} \left[\xi_n (\cos nt - 1) + \xi_n' \sin nt \right],
$$

and that

(1.1.5)
$$
X(t) = \frac{\xi' l}{\sqrt{2\pi}} + \sum_{1}^{\infty} \frac{1}{n \sqrt{\pi}} [\xi_n(\cos nt - 1) + \xi'_n \sin nt],
$$

the Greek letters indicating normalized Laplacian random variables, all independent of each other. To prove this, it is sufficient to verify that the Laplacian function $(1.1.4)$ has the covariance $(1.1.3)$.

Thus, the same random function may be defined by $(1.1.1)$ or by $(1.1.5)$. This theorem was proved by N. Wiener [9] in 1924 and, ten years later, formula (1.1.5) was used as a definition by Paley and Wiener. Starting from one or the other point of view, it is easy to prove that $X(t)$ is almost surely a well defined and continuous function; $\delta X(t)$ is generally $O(\sqrt{di})(dt > 0)$, and not $O(dt)$. Thus $X(t)$ is not differentiable.

This work has been supported in part by the Office of Naval Research. A more developed statement of the same questions will be printed in another publication.