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1. An application of a formula of Wiener

1.1. Let X(¢) be Wiener’s well known random function, defined up to an addi-
tive constant by the condition

(1.1.1) XU —X ) =tVi—t, t>1ty,

£ being a real and normalized Laplacian (often called Gaussian) random variable.
Suppose 0 = ¢ = 2, X(0) = 0, and put

(1.1.2) X (1) =2—t1rX(21r) +UQ).
The Laplacian function U (¢) is co;npletely characterized by its covariance
-
(1.1.3) E(UW U W) | =%

[# = min (¢, ¢); v = max (¢, {); 0 £ 4 < v £ 27]. We may conclude that it may
be represented by the almost surely convergent Fourier series

o

1 )

(1.1.4) U (1) =ZIW~;[£"(CQSM—-1)+£" sin nt],

and that '

(1.1.5) X (1) =T§’Zl=1r+ Z;-i-/:lzn(cos nt—1) + & sinnt],
1

the Greek letters indicating normalized Laplacian random variables, all independ-
ent of each other. To prove this, it is sufficient to verify that the Laplacian func-
tion (1.1.4) has the covariance (1.1.3).

Thus, the same random function may be defined by (1.1.1) or by (1.1.5). This
theorem was proved by N. Wiener [9] in 1924 and, ten years later, formula (1.1.5)
was used as a definition by Paley and Wiener. Starting from one or the other point
of view, it is easy to prove that X (¢) is almost surely a well defined and continuous
function; X (¢) is generally O(Vd2)(dt > 0), and not O(d%). Thus X (¢) is not dif-
ferentiable. ’
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