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Introduction
This short paper consists of two parts which have little in common except

that in both we discuss characteristic functions of one-dimensional probability
distributions. In the first part we consider characteristic functions of a certain
special type whose principal merit lies in the fact that it is easily recognizable.
In the second part we deal with finite distributions (contained in a certain
finite interval) and with finitely different distributions (coinciding outside a
certain finite interval).
The notation follows that of Cram6r's well-known tract.' A distribution

function is denoted by a capital letter, as F(x), and the corresponding charac-
teristic function by the corresponding small letter, asf(t). Thus

(1) f(t) eilz dF(x).

F(x) is real-valued, never decreasing; F(-a) = 0; F(-) = 1. Therefore

(2) f(O) = 1.

Moreoverf(t) is continuous for all real values of t and has the properties

(3) If(t)I . 1,

(4) f(-t) = f(t),

that is, f(-t) andf(t) are conjugate complex.

I. A SIMPLE TYPE OF CARACTrERIsTIc FUNCTIONS

1. A Sufficient Condition for Characteristic Functions
We are given a function, defined for all real values of t; is it the charac-

teristic function of some probability distribution? This question is often
important but not often easy to answer. The properties mentioned in the
introduction [relations (2), (3), (4), and continuity] constitute simple necessary
conditions that a given function f(t) should be characteristic. Yet these con-
ditions, taken together, are far from being sufficient. Necessary and sufficent

1 Cramr [3]. Boldface numbers in brackets refer to references at the end of the paper (see
p. 123).
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