REMARKS ON CHARACTERISTIC FUNCTIONS

G. PÓLYA

STANFORD UNIVERSITY

Introduction

This short paper consists of two parts which have little in common except that in both we discuss characteristic functions of one-dimensional probability distributions. In the first part we consider characteristic functions of a certain special type whose principal merit lies in the fact that it is easily recognizable. In the second part we deal with finite distributions (contained in a certain finite interval) and with finitely different distributions (coinciding outside a certain finite interval).

The notation follows that of Cramér's well-known tract.¹ A distribution function is denoted by a capital letter, as F(x), and the corresponding characteristic function by the corresponding small letter, as f(t). Thus

(1)
$$f(t) = \int_{-\infty}^{\infty} e^{itx} dF(x) dF(x$$

F(x) is real-valued, never decreasing; $F(-\infty) = 0$; $F(\infty) = 1$. Therefore

$$(2) f(0) = 1$$

Moreover f(t) is continuous for all real values of t and has the properties

$$|f(t)| \leq 1,$$

(4)
$$f(-t) = \overline{f(t)}$$

that is, f(-t) and f(t) are conjugate complex.

I. A SIMPLE TYPE OF CHARACTERISTIC FUNCTIONS

1. A Sufficient Condition for Characteristic Functions

We are given a function, defined for all real values of t; is it the characteristic function of some probability distribution? This question is often important but not often easy to answer. The properties mentioned in the introduction [relations (2), (3), (4), and continuity] constitute simple *necessary* conditions that a given function f(t) should be characteristic. Yet these conditions, taken together, are far from being sufficient. Necessary and sufficient

¹ Cramér [3]. Boldface numbers in brackets refer to references at the end of the paper (see p. 123).