4. INCREASING EVENTS.

This chapter contains the well known FKG inequality and a formula of Russo's for the derivative of $P_p\{E\}$ with respect to p for an increasing event E. No periodicity assumptions are necessary in this chapter, so that we shall take as our probability space the triple $(\Omega_U, \Omega_U, P_U)$ as defined in Sect. 3.1. E_U will denote expectation with respect to P_U . <u>Def. 1</u> A Ω_U - measurable function $f:\Omega_U \rightarrow \mathbb{R}$ is called increasing (decreasing) if it is¹ increasing (decreasing) in each $\omega(v), v \in U$. An event $E \in \Omega_U$ is called increasing (decreasing) if its indicator function is increasing (decreasing).

Examples

(i) { #W(v)} is an increasing function, since making more sites occupied can only increase W(v).

(ii) $E_1 = \{\#W(v) = \infty\}$ for fixed v is an increasing event; if E_1 occurs in the configuration ω' , and every site which is occupied in ω' is also occupied in ω'' - and possibly more sites are occupied in ω'' - then E_1 also occurs in configuration ω'' .

(iii) $E_2 = \{ \exists an occupied path on G from v_1 to v_2 \}$ for fixed vertices v_1 and v_2 is increasing for the same reasons as E_1 in ex. (ii).

(iv) The most important example of an increasing event for our purposes is the existence of an occupied crosscut of a certain Jordan domain in \mathbb{R}^2 . More precisely we shall be interested in pair of matching graphs (q,q^*) in \mathbb{R}^2 based on $(\mathcal{M},\mathcal{F}), q_{pl}, q_{pl}^*$ and \mathcal{M}_{pl} will be the planar modifications of q, q^* and \mathcal{M}_{pl} (see Sect. 2.2 and 2.3). Let J be a Jordan curve on \mathcal{M}_{pl}

We use "increasing" and "strictly increasing" instead of "nondecreasing" and "increasing".