2. WHICH GRAPHS DO WE CONSIDER?

This chapter discusses the graphs with which we shall work, as well as several graph-theoretical tools. Except for the basic definitions in Sect. 2.1-2.3 the reader should skip the remaining parts of this chapter until the need for them arises.
2.1 Periodic graphs.

Throughout this monograph we consider only graphs which are imbedded in \mathbb{R}^{d} for some $d<\infty$. Only when strictly necessary shall we make a distinction between a graph and its image under the imbedding. Usually we denote the graph by \mathcal{G}, a generic vertex of \mathcal{G} by u, v or w (with or without subscripts), and a generic edge of \mathcal{G} by e, f or g (with or without subscripts). "Site" will be synonymous with "vertex", and "bond" will be synonymous with "edge". The collection of vertices of \mathcal{G} will always be a countable subset of \mathbb{R}^{d}. The collection of edges of \mathcal{G} will also be countable, and each edge will be a simple arc - that is, a homeomorphic image of the interval $[0,1]$ - in \mathbb{R}^{d}, with two vertices as endpoints but no vertices of \mathcal{G} in its interior. In particular we take an edge to be closed, i.e., we include the endpoints in the edge. If e is an edge, then we denote its interior, i.e., e minus its endpoints, by e. We shall say that e is incident to v if v is an endpoint of e. We only allow graphs in which the endpoints of each edge are distinct; thus we assume
© contains no loops.

We shall, however, allow several edges between the same pair of distinct vertices.

The notation

$$
v_{1} \mathcal{C}_{2} \text { or equivalently } v_{2} \mathcal{F}_{1}
$$

will be used to denote that v_{1} and v_{2} are adjacent or neighbors on C_{g}. This means that there exists an edge of C_{f} with endpoints v_{1} and v_{2}.

