11. RESISTANCE OF RANDOM ELECTRICAL NETWORKS.

11.1 Bounds for resistances of networks.

Many people have studied the electrical resistance of a network made up of random resistors. It was realized quite early that critical phenomena occur, and that there is a close relation with percolation theory, in special cases where the individual resistors can have infinite resistance (or zero resistance). We refer the reader to Kirkpatrick (1978) and Stauffer (1979) for a survey of much of this work. In these introductory paragraphs we shall assume that the reader knows what the resistance of a network is, but we shall come back to a description of resistance in Sect. 11.3.

A typical problem in which the relation with percolation is apparent is the following. Consider the graph \mathbb{Z}^d , with vertices the integral vectors in \mathbb{R}^d , and edges between two vertices v_1 and v_2 iff $|v_1-v_2| = 1$. Assume each edge of \mathbb{Z}^d is a resistance of 1 ohm with probability p, and is removed with probability q = 1-p. As usual all edges are assumed independent of each other. Let \nexists_n be the restriction of the resulting random network to the cube of size n, $B_n = [0,n]^d$. What is the behavior for large n of the resistance in \nexists_n between the left and right face of B_n ? More precisely let

(11.1)
$$A^{U} = A_{n}^{U} = \{v = (v(1), \dots, v(d)): v(1) = 0, 0 \le v(i) \le n, 2 \le i \le d\}$$

be the left face of B_n and (11.2) $A^1 = A_n^1 = \{v = (v(1), \dots, v(d)): v(1) = n, 0 \le v(i) \le n, 2 \le i \le d\}$

the right face. Form a new network from \nexists_n by identifying as one vertex a_0 all vertices of \mathbb{Z}^d in A^0 , and by identifying all vertices of \mathbb{Z}^d in A^1 as another vertex a_1 . This means that we view all edges of \nexists_n which run between the hyperplanes x(1) = 0 and x(1) = 1 as having the common endpoint a_0 in x(1) = 0. In "reality"