9. THE NATURE OF THE SINGULARITY AT P_H.

The arguments of Sykes and Essam (1964) which led them (not quite rigorously) to values for $p_{H}(G)$ for certain graphs were based on "the average number of clusters per site". In a one parameter problem with

$$(9.1) P_p{v is occupied} = p$$

for all vertices v this average is, of course, a function, $\Delta(p,G)$ say, of p. Sykes and Essam's motivation for introducing this function lay in analogies with statistical mechanics, and on the basis of such analogies they assumed that $\Delta(p)$ has exactly one singularity as a function of p, and that this singularity is located at $p = p_H$. This assumption was actually their only non rigorous step. They then proved that for a matching pair of graphs (G,G*) one has the remarkable relationship

(9.2)
$$\Delta(p,G) - \Delta(1-p,G^*) = a \text{ polynomial in } p.$$

It was for this relation that Sykes and Essam introduced matching pairs of graphs. They then proceeded to locate p_H , which was presumably the singularity of Δ , by means of (9.2) for certain matching pairs in which G and G^* have a close relation. E.g. for bond percolation on \mathbb{Z}^2 , G_1^* is isomorphic to G_1 and hence $\Delta(\cdot,G_1) = \Delta(\cdot,G_1^*)$.

In this chapter we shall first give the precise definition and show the existence of $\Delta(p)$, following Grimmett (1976) and Wierman (1978). We then derive the Sykes-Essam relation (9.2) and show that for the matching pairs (G,G*) to which Theorem 3.1 applies $\Delta(p,G)$ is analytic in p for $p \neq p_H(G)$. This justifies part of the Sykes-Essam assumption: For various matching pairs $\Delta(\cdot,G)$ has at most one singularity, and if there is one it must be at $p_H(G)$. Unfortunately we have been unable to show that $\Delta(\cdot,G)$ has any singularity at p_H as a function of p only. (There is an obvious singularity if one brings in additional variables; compare the study of the function f(h) in Kunz