8. POWER ESTIMATES .

In this chapter we study the behavior of the percolation probability and the expected size of an occupied cluster in a one-paremeter problem. As defined in Ch. 3 this means that we consider probability measures for which

is the same for all vertices v of the studied graph G, and the occupancies of all vertices are independent. We want to know the asymptotic behavior of

$$\theta(\mathbf{p}) = \theta(\mathbf{p}, \mathbf{z}_0) = P_{\mathbf{p}} \{ \# W(\mathbf{z}_0) = \infty \}$$

and of 1)

$$E_{p}^{\{\#W(z_{0}); \#W(z_{0}) < \infty\}}$$

as p approaches the critical probability p_H (see Sect. 3.4). By analogy with results in statistical mechanics, and on the basis of numerical evidence (see Stauffer (1979) and Essam (1980)) it is generally believed that

(8.1)
$$\theta(p) \sim C_0(p-p_H)^\beta$$
, $p \neq p_H$,

(8.2)
$$E_{p}^{\{\#W(z_{0}); \#W(z_{0}) < \infty\}} \sim C_{+}(p-p_{H})^{-\gamma_{+}}, P \neq p_{H}$$

and

(8.3)
$$E_{p}^{\{\#W(z_{0})\}} \sim C_{(p_{H}-p)}^{-\gamma_{-}}, p + p_{H}$$

for suitable constants $C_0 C_{\pm}$ and $0 < \beta$, $\gamma_{\pm} < \infty$. Similar power laws are conjectured for other quantities. It is also conjectured that the so-called critical exponents β , γ_{\pm} do not depend (or

198

¹⁾ $E{X;A}$ stands for $E{XI_A}$, i.e., the integral of X over the set A.