CHAPTER XVIII

FUNCTIONS OF A COMPLEX VARIABLE

178. General theorems. The complex function $u(x, y)+i v(x, y)$, where $u(x, y)$ and $v(x, y)$ are single valued real functions continuous and differentiable partially with respect to x and y, has been defined as a function of the complex variable $z=x+i y$ when and only when the relations $u_{x}^{\prime}=v_{y}^{\prime}$ and $u_{y}^{\prime}=-v_{x}^{\prime}$ are satisfied ($\$ 73$). In this case the function has a derivative with respect to \approx which is independent of the way in which Δz approaches the limit zero. Let $w=f(z)$ be a function of a complex variable. Owing to the existence of the derivative the function is necessarily continuous, that is, if ϵ is an arbitrarily small positiv́e number, a number δ may be found so small that

$$
\begin{equation*}
\left|f(z)-f\left(z_{0}\right)\right|<\epsilon \quad \text { when } \quad\left|z-z_{0}\right|<\delta, \tag{1}
\end{equation*}
$$

and moreover this relation holds uniformly for all points z_{0} of the region over which the function is defined, provided the region includes its bounding curve (see Ex. 3, p. 92).

It is further assumed that the derivatives $u_{x}^{\prime}, u_{y}^{\prime}, v_{x}^{\prime}, v_{y}^{\prime}$ are continuous and that therefore the derivative $f^{\prime}(z)$ is continuous.* The function is then said to be an analytic function (§126). All the functions of a complex variable here to be dealt with are analytic in general, although they may be allowed to fail of being analytic at certain specified points called singular points. The adjective "analytic" may therefore usually be omitted. The equations

$$
w=f(z) \quad \text { or } \quad u=u(x, y), \quad v=v(x, y)
$$

define a transformation of the $x y$-plane into the $u v$-plane, or, briefer, of the z-plane into the w-plane; to each point of the former corresponds one and only one point of the latter (§63). If the Jacobian

$$
\left|\begin{array}{ll}
u_{x}^{\prime} & u_{y}^{\prime} \tag{2}\\
v_{x}^{\prime} & r_{y}^{\prime}
\end{array}\right|=\left(u_{x}^{\prime}\right)^{2}+\left(v_{x}^{\prime}\right)^{2}=\left|\cdot f^{\prime}(z)\right|^{2}
$$

[^0]
[^0]: * It may be proved that, in the case of functions of a complex variable, the continuity of the derivative follows from its existence, but the proof will not be given here.

