PART III

SYMBOLIC NOTATION

The Notation and its Immediate Consequences, §§ 39-41
39. Introduction. The conditions that the binary cubic

$$
\begin{equation*}
f=a_{0} x_{1}{ }^{3}+3 a_{1} x_{1}{ }^{2} x_{2}+3 a_{2} x_{1} x_{2}{ }^{2}+a_{3} x_{2}{ }^{3} \tag{1}
\end{equation*}
$$

shall be a perfect cube

$$
\begin{equation*}
\left(\alpha_{1} x_{1}+\alpha_{2} x_{2}\right)^{3} \tag{2}
\end{equation*}
$$

are found by eliminating α_{1} and α_{2} between
(3) $\quad \alpha_{1}^{3}=a_{0}, \quad \alpha_{1}^{2} \alpha_{2}=a_{1}, \quad \alpha_{1} \alpha_{2}^{2}=a_{2}, \quad \alpha_{2}^{3}=a_{3}$,
and hence the conditions are

$$
\begin{equation*}
a_{0} a_{2}=a_{1}{ }^{2}, \quad a_{1} a_{3}=a_{2}{ }^{2} . \tag{4}
\end{equation*}
$$

Thus only a very special form (1) is a perfect cube.
However, in a symbolic sense * any form (1) can be represented as a cube (2), in which α_{1} and α_{2} are now mere symbols such that

$$
\alpha_{1}^{3}, \quad \alpha_{1}^{2} \alpha_{2}, \quad \alpha_{1} \alpha_{2}^{2}, \quad \alpha_{2}^{3}
$$

are given the interpretations (3), while any linear combination of these products, as $2 \alpha_{1}{ }^{3}-7 \alpha_{2}{ }^{3}$, is interpreted to be the corresponding combination of the a 's, as $2 a_{0}-7 a_{3}$. But no interpretation is given to a polynomial in α_{1}, α_{2}, any one of whose terms is a product of more than three factors α, or fewer than three factors α. Thus the first relation (4) does not now follow from (3), since the expression $\alpha_{1}{ }^{4} \alpha_{2}{ }^{2}$ (formerly equal to both

* Due to Aronhold and Clebsch, but equivalent to the more complicated hyperdeterminants of Cayley.

