PART II

THEORY OF INVARIANTS IN NON-SYMBOLIC NOTATION

15. Homogeneity of Invariants. We saw in § 11 that two binary quadratic forms f and f^{\prime} have the invariants

$$
d=a c-b^{2}, \quad s=a c^{\prime}+a^{\prime} c-2 b b^{\prime}
$$

of index 2. Note that s is of the first degree in the coefficients a, b, c of f and also of the first degree in the coefficients of f^{\prime}, and hence is homogeneous in the coefficients of each form separately. The latter is also true of d, but not of the invariant $s+2 d$.

When an invariant of two or more forms is not homogeneous in the coefficients of each form separately, it is a sum of invariants each homogeneous in the coefficients of each form separately.

A proof may be made similar to that used in the following case. Grant merely that $s+2 d$ is an invariant of index 2 of the binary quadratic forms f and f^{\prime}. In the transformed forms (§11), the coefficients A, B, C of F are linear in a, b, c; the coefficients $A^{\prime}, B^{\prime}, C^{\prime}$ of F^{\prime} are linear in $a^{\prime}, b^{\prime}, c^{\prime}$. By hypothesis

$$
A C^{\prime}+A^{\prime} C-2 B B^{\prime}+2\left(A C-B^{2}\right)=\Delta^{2}(s+2 d)
$$

The terms $2 d \Delta^{2}$ of degree 2 in a, b, c on the right arise only from the part $2\left(A C-B^{2}\right)$ on the left. Hence d is itself an invariant of index 2 ; likewise s itself is an invariant.

However, an invariant of a single form is always homogeneous. For example, this is the case with the above discriminant d of f. We shall deduce this theorem from a more general one.

