## ALGEBRAIC INVARIANTS

## PART I

## ILLUSTRATIONS, GEOMETRICAL INTERPRETATIONS AND APPLICATIONS OF INVARIANTS AND COVARIANTS.

1. Illustrations from Plane Analytics. If $x$ and $y$ are the coördinates of a point in a plane referred to rectangular axes, while $x^{\prime}$ and $y^{\prime}$ are the coördinates of the same point referred to axes obtained by rotating the former axes counter-clockwise through an angle $\theta$, then

T: $\quad x=x^{\prime} \cos \theta-y^{\prime} \sin \theta, \quad y=x^{\prime} \sin \theta+y^{\prime} \cos \theta$.
Substituting these values into the linear function

$$
l=a x+b y+c
$$

we get $a^{\prime} x^{\prime}+b^{\prime} y^{\prime}+c$, where

$$
a^{\prime}=a \cos \theta+b \sin \theta, \quad b^{\prime}=-a \sin \theta+b \cos \theta
$$

It follows that

$$
a^{\prime 2}+b^{\prime 2}=a^{2}+b^{2}
$$

Accordingly, $a^{2}+b^{2}$ is called an invariant of $l$ under every transformation of the type $T$.

Similarly, under the transformation $T$ let

$$
L=A x+B y+C=A^{\prime} x^{\prime}+B^{\prime} y^{\prime}+C
$$

so that

$$
A^{\prime}=A \cos \theta+B \sin \theta, \quad B^{\prime}=-A \sin \theta+B \cos \theta .
$$

