In fact, we have the following formal implications:

$$
\begin{aligned}
& (N+X=0)<(N=0)<(N X=0) \\
& \left(N^{\prime} X^{\prime}=1\right)<\left(N^{\prime}=1\right)=\left(N^{\prime}+X^{\prime}=1 .\right.
\end{aligned}
$$

Applying the law of forms, the formula of the consequences becomes

$$
U=\left(N^{\prime}+X^{\prime}\right) U+N X U^{\prime}
$$

and the formula of the causes

$$
U=N^{\prime} X^{\prime} U+(N+X) U^{\prime} ;
$$

or, more generally, since X and X^{\prime} are indeterminate terms, and consequently are not necessarily the negatives of each other, the formula of the consequences will be

$$
U=\left(N^{\prime}+X\right) U+N Y U^{\prime}
$$

and the formula of the causes

$$
U=N^{\prime} X U+(N+Y) U^{\prime}
$$

The first denotes that U is contained in $\left(N^{\prime}+X\right)$ and contains $N Y$; which indeed results, a fortiori, from the hypothesis that U is contained in N^{\prime} and contains N.

The second formula denotes that U is contained in $N^{\prime} X$ and contains $N^{\prime}+Y$ whence results, a fortiori, that U is contained in N^{\prime} and contains N.

We can express this rule verbally if we agree to call every class contained in another a sub-class, and every class that contains another a super-class. We then say: To obtain all the consequences of an equality (put in the form $U=N^{\prime} U+N U^{\prime}$), it is sufficient to substitute for its logical whole N^{\prime} all its super-classes, and, for its logical zero N, all its sub-classes. Conversely, to obtain all the causes of the same equality, it is sufficient to substitute for its logical whole all its sub-classes, and for its logical zero, all its super-classes.
47. Example: Venn's Problem. - The members of the administrative council of a fnancial society are either bondholders or shareholders, but not both. Now, all the bond-

