45. The Law of Causes.-The method of finding the consequences of a given equality suggests directly the method of finding its causes, namely, the propositions of which it is the consequence. Since we pass from the cause to the consequence by eliminating known terms, i. e., by suppressing constituents, we will pass conversely from the consequence to the cause by adjoining known terms, i. e., by adding constituents to the given equality. Now, the number of constituents that may be added to it, i. e., that do not already appear in it, is 2^{n-m}. We will obtain all the possible causes (in the universe of the n terms under consideration) by forming all the additive combinations of these constituents, and adding them to the first member of the equality in virtue of the general formula

$$
(A+B=0)<(A=0)
$$

which means that the equality $(A=0)$ has as its cause the equality ($A+B=0$), in which B is any term. The number of causes thus obtained will be equal to the number of the aforesaid combinations, or $2^{2 n}-m$.

This method may be applied to the investigation of the causes of the premises of the syllogism

$$
(a<b)(b<c)
$$

which, as we have seen, is equivalent to the developed equality

$$
a b c^{\prime}+a b^{\prime} c+a b^{\prime} c^{\prime}+a^{\prime} b c^{\prime}=0 .
$$

This equality contains four of the eight $\left(2^{3}\right)$ constituents of the universe of three terms, the four others being

$$
a b c, a^{\prime} b c, a^{\prime} b^{\prime} c, a^{\prime} b^{\prime} c^{\prime} .
$$

The number of their combinations is $16\left(2^{4}\right)$, this is also the number of the causes sought, which are:

1. $\quad\left(a b c+a b c^{\prime}+a b^{\prime} c+a b^{\prime} c^{\prime}+a^{\prime} b \dot{c}=0\right)$

$$
=\left(a+b c^{\prime}=0\right)=(a=0)(b<c)
$$

2. $\quad\left(a b c^{\prime}+a b^{\prime} c+a b^{\prime} c^{\prime}+a^{\prime} b c+a^{\prime} b c^{\prime}=0\right)$

$$
=\left(a b c^{\prime}+a b^{\prime}+a^{\prime} b=0\right)=(a b<c)(a=b)
$$

