33. Sums and Products of Functions.-It is desirable at this point to introduce a notation borrowed from mathematics, which is very useful in the algebra of logic. Let $f(x)$ be an expression containing one variable; suppose that the class of all the possible values of x is determined; then the class of all the values which the function $f(x)$ can assume in consequence will also be determined. Their sum will be represented by $\sum_{x} f(x)$ and their product by $\prod_{x} f(x)$. This is a new notation and not a new notion, for it is merely the idea of sum and product applied to the values of a function.

When the symbols \sum and \prod are applied to propositions, they assume an interesting significance:

$$
\prod_{x}[f(x)=0]
$$

means that $f(x)=0$ is true for every value of x; and

$$
\sum_{x}[f(x)=0]
$$

that $f(x)=0$ is true for some value of x. For, in order that a product may be equal to 1 (i.e., be true), all its factors must be equal to 1 (i.e., be true); but, in order that a sum may be equal to 1 (i.e., be true), it is sufficient that only one of its summands be equal to x (i.e., be true). Thus we have a means of expressing universal and particular propositions when they are applied to variables, especially those in the form: "For every value of x such and such a proposition is true", and "For some value of x, such and such a proposition is true", etc.

For instance, the equivalence

$$
(a=b)=(a c=b c)(a+c=b+c)
$$

is somewhat paradoxical because the second member contains a term (c) which does not appear in the first. This equivalence is independent of c, so that we can write it as follows, considering c as a variable x

$$
\prod_{x}[(a=b)=(a x=b x)(a+x=b+x)]
$$

