(that is to say, the part common to a^{\prime} and x). The solution is generally indeterminate (between the limits a^{\prime} and b); it is determinate only when the limits are equal,

$$
a^{\prime}=b
$$

for then

$$
x=b+a^{\prime} x=b+b x=b=a^{\prime}
$$

Then the equation assumes the form

$$
\left(a x+a^{\prime} x^{\prime}=0\right)=\left(a^{\prime}=x\right)
$$

and is equivalent to the double inclusion

$$
\left(a^{\prime}<x<a^{\prime}\right)=\left(x=a^{\prime}\right)
$$

31. The Resultant of Elimination.-When $a b$ is not zero, the equation is impossible (always false), because it has a false consequence. It is for this reason that SCHRÖDER considers the resultant of the elimination as a condition of the equation. But we must not be misled by this equivocal word. The resultant of the elimination of x is not a cause of the equation, it is a consequence of it; it is not a sufficient but a necessary condition.

The same conclusion may be reached by observing that $a b$ is the inferior limit of the function $a x+b x^{\prime}$, and that consequently the function can not vanish unless this limit is 0 .

$$
\left(a b<a x+b x^{\prime}\right)\left(a x+b x^{\prime}=0\right)<(a b=0)
$$

We can express the resultant of elimination in other equivalent forms; for instance, if we write the equation in the form

$$
\left(a+x^{\prime}\right)(b+x)=0
$$

we observe that the resultant

$$
a b=0
$$

is obtained simply by dropping the unknown quantity (by suppressing the terms x and x^{\prime}). Again the equation may be written:

$$
a^{\prime} x+b^{\prime} x^{\prime}=\mathbf{1}
$$

and the resultant of elimination:

$$
a^{\prime}+b^{\prime}=1
$$

