Demonstration.-First multiplying by x both members of the given equality [which is the first member of the entire secondary equality], we have

$$
x=a x,
$$

which, as we know, is equivalent to the inclusion

$$
x<a .
$$

Now multiplying both members by x^{\prime}, we have

$$
\circ=b x^{\prime},
$$

which, as we know, is equivalent to the inclusion

$$
b<x
$$

Summing up, we have

$$
\left(x=a x+b x^{\prime}\right)<(b<x<a) .
$$

Conversely,

$$
(b<x<a)<\left(x=a x+b x^{\prime}\right) .
$$

For

$$
\begin{aligned}
& (x<a)=(x=a x), \\
& (b<x)=\left(b x^{\prime}=0\right) .
\end{aligned}
$$

Adding these two equalities member to member [the second members of the two larger equalities],

$$
(x=a x)(0=b x)<\left(x=a x+b x^{\prime}\right)
$$

Therefore

$$
(b<x<a)<\left(x=a x+b x^{\prime}\right)
$$

and thus the equivalence is proved.
30. Schröder's Theorem. ${ }^{\text {T}}$-The equality

$$
a x+b x^{\prime}=0
$$

signifies that x lies between a^{\prime} and b.

Demonstration:

$$
\begin{aligned}
&\left(a x+b x^{\prime}\right.=0) \\
&=(a x=0)\left(b x^{\prime}=0\right), \\
&(a x=0)=\left(x<a^{\prime}\right), \\
&\left(b x^{\prime}=0\right)=(b<x) .
\end{aligned}
$$

[^0]
[^0]: I Schröder, Operationskreis des Logikkalkuls (1877), Theorem 20.

