For, if we develop with respect to x, we have
$a x+b x^{\prime}+a b x+a b x^{\prime}=(a+a b) x+(b+a b) x^{\prime}=a x+b x^{\prime}$.
Cor. 2. We have the equivalence

$$
a x+b x^{\prime}+c==(a+c) x+(b+c) x^{\prime} .
$$

For if we develop the term c with respect to x, we find $a x+b x^{\prime}+c x+c x^{\prime}=(a+c) x+(b+c) x^{\prime}$.
Thus, when a function contains terms (whose sum is represented by c) independent of x, we can always reduce it to the developed form $a x+b x^{\prime}$ by adding c to the coefficients of both x and x^{\prime}. Therefore we can always consider a function to be reduced to this form.

In practice, we perform the development by multiplying each term which does not contain a certain letter (x for instance) by ($x+x^{\prime}$) and by developing the product according to the distributive law. Then, when desired, like terms may be reduced to a single term.
25. The Formulas of De Morgan.-In any development of 1 , the sum of a certain number of constituents is the negative of the sum of all the others.

For, by hypothesis, the sum of these two sums is equal to I , and their product is equal to o , since the product of two different constituents is zero.

From this proposition may be deduced the formulas of De Morgan:

$$
(a+b)^{\prime}=a^{\prime} b^{\prime}, \quad(a b)^{\prime}=a^{\prime}+b^{\prime} .
$$

Demonstration.-Let us develop the sum $(a+b)$:

$$
a+b=a b+a b^{\prime}+a b+a^{\prime} b=a b+a b^{\prime}+a^{\prime} b .
$$

Now the development of I with respect to a and b contains the three terms of this development plus a fourth term $a^{\prime} b^{\prime}$. This fourth term, therefore, is the negative of the sum of the other three.

We can demonstrate the second formula either by a correlative argument (i. e., considering the development of \circ by factors) or by observing that the development of ($a^{\prime}+b^{\prime}$),

