On the other hand: r. Add a^{\prime} to each of the two members of the inclusion $a<b$; we have

$$
\left(a^{\prime}+a<a^{\prime}+b\right)=\left(\mathbf{1}<a^{\prime}+b\right)=\left(a^{\prime}+b=\mathbf{1}\right)
$$

2. We know that

$$
b=(a+b)\left(a^{\prime}+b\right)
$$

Now, if $a^{\prime}+b=1$,

$$
b=(a+b) \times \mathbf{1}=a+b
$$

By the preceding formulas, an inclusion can be transformed at will into an equality whose second member is either \circ or r . Any equality may also be transformed into an equality of this form by means of the following formulas:

$$
(a=b)=\left(a b^{\prime}+a^{\prime} b=0\right), \quad(a=b)=\left[\left(a+b^{\prime}\right)\left(a^{\prime}+b\right)=\mathbf{1}\right]
$$

Demonstration:

$$
\begin{gathered}
(a=b)=(a<b)(b<a)=\left(a b^{\prime}=0\right)\left(a^{\prime} b=0\right)=\left(a b^{\prime}+a^{\prime} b=0\right) \\
(a=b)=(a<b)(b<a)=\left(a^{\prime}+b=\mathbf{1}\right)\left(a+b^{\prime}=\mathbf{1}\right)= \\
{\left[\left(a^{\prime}+b^{\prime}\right)\left(a^{\prime}+b\right)=\mathbf{1}\right]}
\end{gathered}
$$

Again, we have the two formulas
$(a=b)=\left[(a+b)\left(a^{\prime}+b^{\prime}\right)=0\right], \quad(a=b)=\left(a b+a^{\prime} b^{\prime}=1\right)$, which can be deduced from the preceding formulas by performing the indicated multiplications (or the indicated additions) by means of the distributive law.
r9. Law of Contraposition.-We are now able to demonstrate the law of contraposition,

$$
(a<b)=\left(b^{\prime}<a^{\prime}\right)
$$

Demonstration.-By the preceding formulas, we have

$$
(a<b)=\left(a b^{\prime}=0\right)=\left(b^{\prime}<a^{\prime}\right)
$$

Again, the law of contraposition may take the form

$$
\left(a<b^{\prime}\right)=\left(b<a^{\prime}\right)
$$

which presupposes the law of double negation. It may be expressed verbally as follows: "Two members of an inclusion may be interchanged on condition that both are denied".

