
Chapter 6

Gaussian Curvature Extrinsically Defined

Pep Talk to the Reader

I think that the material in this chapter is very difficult. Don’t give up and don’t lose hope. What is
happening here is that we are standing at the interface between things that we can see and argue about
geometrically, and things that are given formally. It is difficult to hold these two aspects together—one is
alive and one is dead, but both are important. It sometimes feels easier to jump headlong into the formal
stuff—forgetting about what it means geometrically and just following everything through mechanically.
Don’t do that! Unfortunately that is often the tendency—it is also my tendency! Resist it and persevere in
trying to see what the meanings of these formal things are geometrically as you go along. This is hard to
do, but the effort will be well worth it. On the other hand, there exists a tendency to ignore the formal
stuff and rely only on our geometric intuition. But, if we ignore the formal stuff, we would miss out on
the incredibly powerful tools contained in the formalism. We need to use both the formal analytic tools
and our geometric intuition; and we need to look for their interrelations. Relate everything in this chapter
to the example of surfaces you already know, such as the sphere, cylinder, cone, ribbon, and strake.

In Chapter 5 we developed an intrinsic description of the intrinsic curvature of a surface. In this
chapter we start with the more common extrinsic description of the Gaussian curvature of a surface,
which is based on the normal curvature introduced in Problem 4.7.a. The Gaussian and intrinsic curva-
tures are easily seen to be the same on a sphere. Then we use a mapping (called the Gauss map) from the
surface to the sphere, which then allows us to show that the Gaussian curvature and intrinsic curvature
coincide on all C2 surfaces.

In Chapter 7 we will use these results to express the Gaussian (intrinsic) curvature in local coordi-
nates and to derive several more intrinsic descriptions of Gaussian curvature. 

At the end of this chapter we will explore mean curvature and minimal surfaces.

PROBLEM 6.1. Gaussian Curvature, Extrinsic Definition

Let p be a point on the smooth C2 surface M in R3, and let n(p) be one of the two choices of unit
normal to the surface at p, so that n is differentiable in a neighborhood of p. Let Tp be a unit tangent
vector at p. If γ is a curve on M, which passes through p and has Tp as unit tangent vector, then, according
to Problem 4.7.a, the normal curvature of γ at p satisfies

κκκκn(p) = 〈Tp,−−−−Tpn〉 n(p).

Since n(p) is a unit vector, 〈Tp,-Tpn〉 is the magnitude of the normal curvature vector, and thus we define
the (scalar) normal curvature of M at p in the direction Tp as

κn(Tp) ≡ 〈Tp,−−−−Tpn〉 

≡ the length of the projection of −−−−Tpn onto the direction of Tp. 


