PART III. INTEGRAL CALCULUS

CHAPTER XI

ON SIMPLE INTEGRALS

118. Integrals containing a parameter. Consider

$$\boldsymbol{\phi}\left(\alpha\right) = \int_{x_{0}}^{x_{1}} f(x, \alpha) \, dx, \tag{1}$$

a definite integral which contains in the integrand a parameter α . If the indefinite integral is known, as in the case

$$\int \cos \alpha x dx = \frac{1}{\alpha} \sin \alpha x, \qquad \int_0^{\frac{\pi}{2}} \cos \alpha x dx = \frac{1}{\alpha} \sin \alpha x \Big|_0^{\frac{\pi}{2}} = \frac{1}{\alpha},$$

it is seen that the indefinite integral is a function of x and α , and that the definite integral is a function of α alone because the variable xdisappears on the substitution of the limits. If the limits themselves depend on α , as in the case

$$\int_{\frac{1}{\alpha}}^{\alpha} \cos \alpha x dx = \frac{1}{\alpha} \sin \alpha x \Big|_{\frac{1}{\alpha}}^{\alpha} = \frac{1}{\alpha} (\sin \alpha^2 - \sin 1),$$

the integral is still a function of α .

In many instances the indefinite integral in (1) cannot be found explicitly and it then becomes necessary to discuss the continuity, differentiation, and integration of the function $\phi(\alpha)$ defined by the integral without having recourse to the actual evaluation of the integral; in fact these discussions may be required in order to effect that evaluation. Let the limits x_0 and x_1 be taken

as constants independent of α . Consider the range of values $x_0 \leq x \leq x_1$ for x, and let $\alpha_0 \leq \alpha \leq \alpha_1$ be the range of values over which the function $\phi(\alpha)$ is to be discussed. The function $f(x, \alpha)$ may be plotted as the surface $z = f(x, \alpha)$ over the rectangle of values for (x, α) . The 281