PART III

SYMBOLIC NOTATION

THE NOTATION AND ITS IMMEDIATE CONSEQUENCES, §§ 39-41

39. Introduction. The conditions that the binary cubic

$$(1) f = a_0 x_1^3 + 3a_1 x_1^2 x_2 + 3a_2 x_1 x_2^2 + a_3 x_2^3$$

shall be a perfect cube

$$(2) \qquad (\alpha_1 x_1 + \alpha_2 x_2)^3$$

are found by eliminating α_1 and α_2 between

(3)
$$\alpha_1^3 = a_0, \quad \alpha_1^2 \alpha_2 = a_1, \quad \alpha_1 \alpha_2^2 = a_2, \quad \alpha_2^3 = a_3,$$

and hence the conditions are

$$a_0 a_2 = a_1^2, \qquad a_1 a_3 = a_2^2.$$

Thus only a very special form (1) is a perfect cube.

However, in a symbolic sense * any form (1) can be represented as a cube (2), in which α_1 and α_2 are now mere symbols such that

(3')
$$\alpha_1^3$$
, $\alpha_1^2\alpha_2$, $\alpha_1\alpha_2^2$, α_2^3

are given the interpretations (3), while any linear combination of these products, as $2\alpha_1^3 - 7\alpha_2^3$, is interpreted to be the corresponding combination of the a's, as $2a_0 - 7a_3$. But no interpretation is given to a polynomial in α_1 , α_2 , any one of whose terms is a product of more than three factors α , or fewer than three factors α . Thus the first relation (4) does not now follow from (3), since the expression $\alpha_1^4\alpha_2^2$ (formerly equal to both

^{*}Due to Aronhold and Clebsch, but equivalent to the more complicated hyperdeterminants of Cayley.