Appendix A The Maximum Principles

In this chapter we summarize the maximum principles that will be used in this book. For more general theory, see Friedman [17], Protter and Weinberger [39] and Gilbarg and Trudinger [18].

The following is the standing assumptions in this chapter. Let n be an integer with $n \ge 1$. Let E be an open set in \mathbb{R}^{n+1} with

$$\partial E \cap \{(x,0) \mid x \in \mathbb{R}^n\} \neq \emptyset, E \cap (\mathbb{R}^n \times (-\infty, 0]) = \emptyset.$$

For given T > 0, we define

$$\Gamma_T = \{ (x,t) \in \partial E \, | \, t \le T \},
 E_T = \{ (x,t) \in E \, | \, t \le T \}.$$

If $E = \{(x,t) \mid x \in \mathbb{R}^n, t > 0\}$, we have $E_T = \mathbb{R}^n \times (0,T]$ and $\Gamma_T = \{(x,0) \mid x \in \mathbb{R}^n\}$.

For any point P in E_T , we denote by S(P) the set of all points Q in E_T that can be connected to P by a simple continuous curve in E_T along which the *t*-coordinate is nondecreasing from Q to P. See Figure A.1.

We always assume that u(x,t) and $u(x,t) = (u_1(x,t), \ldots, u_m(x,t))$ are continuous in $E_T \cup \Gamma_T$ and they are twice continuously differentiable in x and continuously differentiable in t in E_T .

A.1 Maximum Principles for Differential Inequalities

Let $a_{ij}(x,t)$, $b(x,t) = (b_j(x,t))_{1 \le j \le n}$ and h(x,t) be continuous functions with

$$\sup_{(x,t)\in E_T} |a_{ij}(x,t)| < \infty, \quad \sup_{(x,t)\in E_T} \frac{|b_j(x,t)|}{1+|x|} < \infty, \quad \sup_{(x,t)\in E_T} \frac{|h(x,t)|}{1+|x|^2} < \infty$$

for all $1 \leq i, j \leq n$. Now we assume

$$a_{ji}(x,t) = a_{ij}(x,t)$$
 in E_T

for all $1 \leq i, j \leq n$. We assume that there exists $\mu_0 > 0$ such that we have

$$\sum_{i,j=1}^{n} a_{ij}(x,t)\xi_i\xi_j \ge \mu_0 |\xi|^2$$

every $(x,t) \in E_T$ and every $\xi = (\xi_1, \dots, \xi_n) \in \mathbb{R}^n$.