Chapter 1

Phase Plane Analysis

In this chapter we prove the existence of traveling fronts by using phase plane
analysis. One can see [2, 3, 14, 15, 35] for this analysis. We study a reaction-diffusion
equation with a nonlinear term
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Here ug is a given function that is a bounded and uniformly continuous function
from R to R. Let u(z,t;up) be the solution of (1.1). The standing assumption on
f in this chapter is as follows. A function f is of class C'[b, 1] for b € R with b < 1
and it satisfies
fy =0, f)<o, w2
f(s)>0 for b<s<1. '
Additional assumptions on f will be stated in the following sections.

For ¢ € R we put y = « — ¢t and w(y,t) = u(x,t). Then we have

Wy — Wy — Wyy — f(w) =0, yeR, t>0,

w(y,0) = uo(y), y € R. (1.3)

Let U be the profile of a traveling front. Then U is an equilibrium solution of (1.3)
and satisfies
—U"(y) - cU'(y) - f(U(y)) =0, yeR. (1.4)
Equation (1.4) is called the profile equation of a one-dimensional traveling front U.
To find (¢,U) that satisfies (1.4), we introduce the following equation
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for every ¢ € R. If p(z) satisfies (1.5), we set

b=

and have



