Chapter 1

Phase Plane Analysis

In this chapter we prove the existence of traveling fronts by using phase plane analysis. One can see $[2,3,14,15,35]$ for this analysis. We study a reaction-diffusion equation with a nonlinear term

$$
\begin{gather*}
\frac{\partial u}{\partial t}=\frac{\partial^{2} u}{\partial x^{2}}+f(u), \quad x \in \mathbb{R}, t>0, \tag{1.1}\\
u(x, 0)=u_{0}(x), \quad x \in \mathbb{R} .
\end{gather*}
$$

Here u_{0} is a given function that is a bounded and uniformly continuous function from \mathbb{R} to \mathbb{R}. Let $u\left(x, t ; u_{0}\right)$ be the solution of (1.1). The standing assumption on f in this chapter is as follows. A function f is of class $C^{1}[b, 1]$ for $b \in \mathbb{R}$ with $b<1$ and it satisfies

$$
\begin{gather*}
f(1)=0, \quad f^{\prime}(1)<0 \\
f(s)>0 \quad \text { for } \quad b<s<1 \tag{1.2}
\end{gather*}
$$

Additional assumptions on f will be stated in the following sections.
For $c \in \mathbb{R}$ we put $y=x-c t$ and $w(y, t)=u(x, t)$. Then we have

$$
\begin{array}{cl}
w_{t}-c w_{y}-w_{y y}-f(w)=0, & y \in \mathbb{R}, t>0, \tag{1.3}\\
w(y, 0)=u_{0}(y), & y \in \mathbb{R}
\end{array}
$$

Let U be the profile of a traveling front. Then U is an equilibrium solution of (1.3) and satisfies

$$
\begin{equation*}
-U^{\prime \prime}(y)-c U^{\prime}(y)-f(U(y))=0, \quad y \in \mathbb{R} \tag{1.4}
\end{equation*}
$$

Equation (1.4) is called the profile equation of a one-dimensional traveling front U.
To find (c, U) that satisfies (1.4), we introduce the following equation

$$
\begin{gather*}
p^{\prime}(z)=-c-\frac{f(z)}{p(z)}, \quad b<z<1, \\
p(z)<0, \quad b<z<1, \tag{1.5}\\
p(1)=0
\end{gather*}
$$

for every $c \in \mathbb{R}$. If $p(z)$ satisfies (1.5), we set

$$
y=\int_{b}^{U} \frac{\mathrm{~d} z}{p(z)}
$$

and have

$$
\begin{gathered}
\frac{\mathrm{d} y}{\mathrm{~d} U}=\frac{1}{p(U)}, \quad U^{\prime}(y)=p(U(y))<0 \\
U^{\prime \prime}(y)=p^{\prime}(U(y)) U^{\prime}(y)=-c p(U(y))-f(U(y))=-c U^{\prime}(y)-f(U(y))
\end{gathered}
$$

