Chapter 3

Ratios and Configurations of Flags

This section is devoted to the development of some foundational tools: triple ratios, cross ratios, quadruple ratios and configurations of flags. Most of the definitions and conventions follow Fock and Goncharov [15].

3.1 Flags

Recall from §2.1.7 that the analytic homomorphism $\mathrm{GL}(3,\mathbb{R}) \to \mathrm{SL}(3,\mathbb{R})$ defined by

$$A \mapsto (\det(A))^{-1/3}A$$

descends to an isomorphism $PGL(3, \mathbb{R}) \to SL(3, \mathbb{R})$. We work with $SL(3, \mathbb{R})$, which allows us to talk about eigenvalues of maps, and it will be clear from context whether an element of $SL(3, \mathbb{R})$ acts on \mathbb{RP}^2 or on \mathbb{R}^3 . We also remark that the action on \mathbb{R}^3 is by orientation preserving maps.

A flag $\mathcal{F}_i := (V_i, \eta_i)$ of \mathbb{RP}^2 is a pair consisting of a point $V \in \mathbb{RP}^2$ and a line $\eta \subset \mathbb{RP}^2$ passing through V. An *m*-tuple of flags $\{\mathcal{F}_1, \ldots, \mathcal{F}_m\}$ is in general position if all of the following conditions are satisfied:

- no three points are collinear;
- no three lines are concurrent;
- $\eta_i(V_j) = 0 \iff i = j.$

Henceforth, we will denote by $((\mathcal{F}_1, \ldots, \mathcal{F}_m))$ a cyclically ordered *m*-tuple of flags, as opposed to an ordered *m*-tuple $(\mathcal{F}_1, \ldots, \mathcal{F}_m)$. The group of projective transformations acts on the space of flags via:

$$T \cdot \mathcal{F}_i := (T \cdot V_i, T \cdot \eta_i), \quad \text{for all } T \in \mathrm{SL}(3, \mathbb{R}).$$

The action naturally extends to m-tuples, ordered m-tuples and cyclically ordered m-tuples of flags. Furthermore, the action preserves the respective subspaces of flags in general position.

Lemma 3.1.1. The action of $SL(3, \mathbb{R})$ on the space of ordered *m*-tuples of flags in general position is free if and only if $m \ge 3$.

Proof. The cases m = 1, 2 are straight forward.

Suppose $m \ge 3$ and let $\mathfrak{F} = (\mathcal{F}_1, \ldots, \mathcal{F}_m)$ be an ordered *m*-tuple of flags in general position, where $\mathcal{F}_i := (V_i, \eta_i)$. Then the ordered 4-tuple of points $(V_1, V_2, V_3, \eta_1 \cap \eta_2)$ is in general position and its stabiliser in $SL(3, \mathbb{R})$ is trivial.