Chapter 11

Restricted Usage of Vector Fields

In this chapter, we discuss two typical situations where we cannot use all of the vector fields in Γ .

11.1 Systems of nonlinear wave equations with multiple propagation speeds

In this section, we consider systems of wave equations with multiple propagation speeds. Let us consider

$$\Box_{c_j} u_j(t,x) = F_j(u,\partial u), \qquad (t,x) \in (0,\infty) \times \mathbb{R}^3, \qquad (11.1)$$

$$u_j(0,x) = \varepsilon f_j(x), \ (\partial_t u)(0,x) = \varepsilon g_j(x), \quad x \in \mathbb{R}^3$$
(11.2)

for j = 1, 2, ..., N, where $\Box_c = \partial_t^2 - c^2 \Delta$ for c > 0, and $c_j > 0$ for j = 1, 2, ..., N. As before, $u = (u_j)$, $\partial u = (\partial_a u_j)$, $f = (f_j)$, and $g = (g_j)$ with $1 \le j \le N$ and $0 \le a \le 3$.

We can make use of the vector fields S, $\Omega = (\Omega_{jk})$, and $\partial = (\partial_a)$, because we have $[\Box_c, S] = 2\Box_c$ and $[\Box_c, \Omega_{jk}] = [\Box_c, \partial_a] = 0$ for any c > 0. However, the Lorentz boost $L = (L_k)$ cannot be used because the commuting relation $[\Box_c, L_k] =$ $2(1 - c^2)\partial_t\partial_k$ has no good property when $c \neq 1$. Therefore we have to exploit a vector field method without the Lorentz boost L.

We put $\Gamma_* = (\Gamma_{*,j})_{0 \le j \le (n^2+n+2)/2} = (S, \Omega, \partial)$, and

$$|\phi(t,x)|_{*,s} := \left(\sum_{|\alpha| \le s} |\Gamma^{\alpha}_{*}\phi(t,x)|^{2}\right)^{1/2}, \ \|\phi(t,\cdot)\|_{*,s} = \left\||\phi(t,\cdot)|_{*,s}\right\|_{L^{2}(\mathbb{R}^{3})}$$

for a smooth function ϕ and a non-negative integer s. By (5.8) and (5.9), we find that (5.11) and (5.12) stay valid if we replace Γ by Γ_* ; hence, for $s \in \mathbb{N}_0$, we obtain

$$C^{-1}|\partial\phi(t,x)|_{*,s} \le \sum_{|\alpha|\le s} |\partial(\Gamma^{\alpha}_*\phi)(t,x)| \le C|\partial\phi(t,x)|_{*,s}.$$
(11.3)

We also find that (5.10) remains true if we replace Γ with Γ_* , and that a similar formula to (5.5) holds.

The following null condition for the multiple speed case in three space dimensions was introduced by Yokoyama [178] (it was also partly suggested in Hanouzet-Joly [32]):