Chapter 2

Preliminaries

In this chapter we give several notation and a quick review of basic concepts which will be used throughout this monograph.

2.1 Notation

2.1.1 Sets of numbers and the Euclidean space.

 \mathbb{N} , \mathbb{Z} , \mathbb{R} , and \mathbb{C} denote the sets of natural numbers, integers, real numbers, and complex numbers, respectively. The symbol *i* stands for the imaginary unit, namely $i = \sqrt{-1}$. \mathbb{N}_0 denotes the set of non-negative integers, that is to say, $\mathbb{N}_0 = \mathbb{N} \cup \{0\}$. [x] denotes the largest integer not exceeding a real number x.

For $d \in \mathbb{N}$, \mathbb{R}^d is the *d*-dimensional Euclidean space, and $|x| = (\sum_{j=1}^d x_j^2)^{1/2}$ for $x = (x_1, \ldots, x_d) \in \mathbb{R}^d$. An element of \mathbb{R}^d is sometimes written as $x = (x_1, \ldots, x_d)^{\mathrm{T}}$ when it is convenient, where B^{T} denotes the transpose of a matrix (or vector) B. For $x = (x_1, \ldots, x_d)$, $y = (y_1, \ldots, y_d) \in \mathbb{R}^d$, the inner product $x \cdot y$ is given by $x \cdot y = \sum_{j=1}^d x_j y_j$. For $x \in \mathbb{R}^d$, we set

$$\langle x \rangle = \sqrt{1 + |x|^2}.$$

It is easy to see that $(1 + |x|)/\sqrt{2} \le \langle x \rangle \le 1 + |x|$ for any $x \in \mathbb{R}^d$; in other words, 1 + |x| and $\langle x \rangle$ are equivalent.

For R > 0 and $y \in \mathbb{R}^d$, $B_R(y)$ denotes a closed ball centered at y with radius R, that is to say

$$\boldsymbol{B}_R(y) = \{ x \in \mathbb{R}^d; |x - y| \le R \}.$$

We put $B_R := B_R(0)$, where 0 is the origin in \mathbb{R}^d .

We write \mathbb{S}^{d-1} for the (d-1)-dimensional unit sphere, namely

$$\mathbb{S}^{d-1} = \{x \in \mathbb{R}^d; |x| = 1\}$$

For any given smooth hypersurface D in \mathbb{R}^d , we write dS for its surface element. We use a suffix to indicate the variable of an integral explicitly; namely an expression like $\int_D f(x) dS_x$ or $\int_D f(y) dS_y$ will be used.

2.1.2 Differentiation and the multi-indices.

The notion of multi-indices is quite useful to simplify the descriptions. An element $\alpha = (\alpha_1, \ldots, \alpha_d) \in \mathbb{N}_0^d$ is called a *multi-index*. We define

$$\begin{aligned} |\alpha| &:= \alpha_1 + \dots + \alpha_d, \qquad \alpha! := \alpha_1! \dots \alpha_d!, \\ x^{\alpha} &:= x_1^{\alpha_1} \dots x_d^{\alpha_d} \text{ for } x = (x_1, \dots, x_d) \in \mathbb{R}^d. \end{aligned}$$