CHAPTER 5

Introduction to inverse scattering

Suppose we are given two asymptotically hyperbolic metrics which differ only on a compact set. If the associated scattering operators coincide, one can show that these two metrics coincide up to a diffeomorphism. This result can be extended to manifolds with asymptotically hyperbolic ends when two metrics coincide on one end having a regular infinity. The aim of this chapter is to explain the idea of the proof of these theorems.

1. Local problem on \mathbf{H}^{n}

Recall that in the geodesic polar coordinates centered at $(0,1)$, the metric on \mathbf{H}^{n} takes the form

$$
d s^{2}=(d r)^{2}+\sinh ^{2} r(d \theta)^{2}
$$

where $(d \theta)^{2}$ is the standard metric on S^{n-1} (see formula (1.4) in Chap. 1). Letting $y=2 e^{-r}$ and $x=\theta$, one can rewrite the above metric as

$$
d s^{2}=\left(\frac{d y}{y}\right)^{2}+\left(\frac{1}{y}-\frac{y}{4}\right)^{2}(d x)^{2}, \quad y \in(0,2] .
$$

Suppose this metric is perturbed so that

$$
d s^{2}=\frac{(d y)^{2}+(d x)^{2}+A(x, y, d x, d y)}{y^{2}}
$$

with $A(x, y, d x, d y)$ satisfying the assumption (A-4) of Chap. 3, §3. The theorem we are going to prove is as follows.

Theorem 1.1. Suppose we are given two Riemannian metrics $G^{(p)}, p=1,2$, on \mathbf{H}^{n} satisfying the above assumption. Suppose their scattering operators coincide. Suppose furthermore $G^{(1)}$ and $G^{(2)}$ coincide except for a compact set. Then $G^{(1)}$ and $G^{(2)}$ are isometric.

The proof is done by the following steps. Let $B_{a} \subset \mathbf{H}^{n}$ be a ball of radius a with respect to the unperturbed metric centered at $(0,1)$ such that $G^{(1)}=G^{(2)}$ outside B_{a}. We first take a geodesic sphere $S_{a}=\partial B_{a}$, and consider the boundary value problem for the Laplace-Beltrami operators in the interior domain B_{a}. Then the associated Dirichlet-to-Neumann map (or Neumann-to-Dirichlet map) coincide. We use the boundary control method of Belishev-Kurylev to show that $G^{(1)}$ and $G^{(2)}$ are isometric in B_{a} (see [10] and [77]).

2. Scattering operator and N-D map

2.1. Restriction of the generalized eigenfunctions to a surface. Let us start with preparing local regularity estimates for the resolvent $R\left(k^{2} \pm i 0\right)$ constructed in Chap. 2. We first introduce some notation in \mathbf{R}^{n}. Letting $\widehat{f}(\xi)$ be the

