CHAPTER 5

Introduction to inverse scattering

Suppose we are given two asymptotically hyperbolic metrics which differ only on a compact set. If the associated scattering operators coincide, one can show that these two metrics coincide up to a diffeomorphism. This result can be extended to manifolds with asymptotically hyperbolic ends when two metrics coincide on one end having a regular infinity. The aim of this chapter is to explain the idea of the proof of these theorems.

1. Local problem on \mathbf{H}^n

Recall that in the geodesic polar coordinates centered at (0, 1), the metric on \mathbf{H}^n takes the form

$$ds^2 = (dr)^2 + \sinh^2 r \, (d\theta)^2,$$

where $(d\theta)^2$ is the standard metric on S^{n-1} (see formula (1.4) in Chap. 1). Letting $y = 2e^{-r}$ and $x = \theta$, one can rewrite the above metric as

$$ds^{2} = \left(\frac{dy}{y}\right)^{2} + \left(\frac{1}{y} - \frac{y}{4}\right)^{2} (dx)^{2}, \quad y \in (0, 2].$$

Suppose this metric is perturbed so that

$$ds^{2} = \frac{(dy)^{2} + (dx)^{2} + A(x, y, dx, dy)}{y^{2}},$$

with A(x, y, dx, dy) satisfying the assumption (A-4) of Chap. 3, §3. The theorem we are going to prove is as follows.

Theorem 1.1. Suppose we are given two Riemannian metrics $G^{(p)}$, p = 1, 2, on \mathbf{H}^n satisfying the above assumption. Suppose their scattering operators coincide. Suppose furthermore $G^{(1)}$ and $G^{(2)}$ coincide except for a compact set. Then $G^{(1)}$ and $G^{(2)}$ are isometric.

The proof is done by the following steps. Let $B_a \subset \mathbf{H}^n$ be a ball of radius a with respect to the unperturbed metric centered at (0, 1) such that $G^{(1)} = G^{(2)}$ outside B_a . We first take a geodesic sphere $S_a = \partial B_a$, and consider the boundary value problem for the Laplace-Beltrami operators in the interior domain B_a . Then the associated Dirichlet-to-Neumann map (or Neumann-to-Dirichlet map) coincide. We use the boundary control method of Belishev-Kurylev to show that $G^{(1)}$ and $G^{(2)}$ are isometric in B_a (see [10] and [77]).

2. Scattering operator and N-D map

2.1. Restriction of the generalized eigenfunctions to a surface. Let us start with preparing local regularity estimates for the resolvent $R(k^2 \pm i0)$ constructed in Chap. 2. We first introduce some notation in \mathbf{R}^n . Letting $\hat{f}(\xi)$ be the