CHAPTER 1

Fourier transforms on the hyperbolic space

1. Basic geometry in the hyperbolic space

1.1. Upper-half space model. We begin with reviewing elementary geometric properties of the hyperbolic space \mathbf{H}^{n}. Throughout this note, \mathbf{H}^{n} is the Euclidean upper-half space

$$
\begin{equation*}
\mathbf{R}_{+}^{n}=\left\{(x, y) ; x \in \mathbf{R}^{n-1}, y>0\right\} \tag{1.1}
\end{equation*}
$$

equipped with the metric

$$
\begin{equation*}
d s^{2}=\frac{|d x|^{2}+(d y)^{2}}{y^{2}} \tag{1.2}
\end{equation*}
$$

In the following, for $v=\left(v_{1}, \cdots, v_{d}\right) \in \mathbf{R}^{d},|v|$ means its Euclidean length : $|v|=$ $\left(\sum_{i=1}^{d} v_{i}^{2}\right)^{1 / 2}$.

Theorem 1.1. (1) The following 4 maps are the generators of the group of isometries on \mathbf{H}^{n} :
(a) dilation : $(x, y) \rightarrow(\lambda x, \lambda y), \lambda>0$,
(b) translation : $(x, y) \rightarrow(x+v, y), v \in \mathbf{R}^{n-1}$,
(c) rotation : $(x, y) \rightarrow(R x, y), R \in O(n-1)$,
(d) inversion with respect to the unit sphere centered at $(0,0)$:

$$
(x, y) \rightarrow(\bar{x}, \bar{y})=\frac{(x, y)}{|x|^{2}+|y|^{2}}
$$

(2) Any isometry on \mathbf{H}^{n} is a product of the above 4 isometries.

Proof. The assertion (1) follows from a direct computation. We use

$$
d \bar{x}=\frac{d x}{r^{2}}-\frac{2 x}{r^{3}} d r, \quad d \bar{y}=\frac{d y}{r^{2}}-\frac{2 y}{r^{3}} d r,
$$

where $r^{2}=x^{2}+y^{2}, \bar{x}=x / r^{2}, \bar{y}=y / r^{2}$, to prove (d). The proof of the assertion (2) is in [15] pp. 21, 24.

Recall that the inversion with respect to the sphere $\left\{\left|x-x_{0}\right|=r\right\}$ is the map: $x \rightarrow r^{2}\left(x-x_{0}\right) /\left|x-x_{0}\right|^{2}+x_{0}$. We give examples of the isometry in \mathbf{H}^{2} and \mathbf{H}^{3}, which can be proved by a straightforward computation.
1.2. \mathbf{H}^{2} and linear fractional transformation. When $n=2$, it is convenient to identify a point $(x, y) \in \mathbf{H}^{2}$ with the complex number $z=x+i y$. For a matrix

$$
\gamma=\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) \in S L(2, \mathbf{R})
$$

