CHAPTER 1

Fourier transforms on the hyperbolic space

1. Basic geometry in the hyperbolic space

1.1. Upper-half space model. We begin with reviewing elementary geometric properties of the hyperbolic space \mathbf{H}^n . Throughout this note, \mathbf{H}^n is the Euclidean upper-half space

(1.1)
$$\mathbf{R}^{n}_{+} = \{(x, y) \; ; \; x \in \mathbf{R}^{n-1}, \; y > 0\}$$

equipped with the metric

(1.2)
$$ds^{2} = \frac{|dx|^{2} + (dy)^{2}}{y^{2}}.$$

In the following, for $v = (v_1, \dots, v_d) \in \mathbf{R}^d$, |v| means its Euclidean length : $|v| = \left(\sum_{i=1}^d v_i^2\right)^{1/2}$.

Theorem 1.1. (1) The following 4 maps are the generators of the group of isometries on \mathbf{H}^n :

- (a) dilation : $(x, y) \rightarrow (\lambda x, \lambda y), \ \lambda > 0,$
- (b) translation : $(x, y) \rightarrow (x + v, y), v \in \mathbb{R}^{n-1}$,
- (c) rotation : $(x, y) \rightarrow (Rx, y), R \in O(n-1),$
- (d) inversion with respect to the unit sphere centered at (0,0):

$$(x,y) \to (\overline{x},\overline{y}) = \frac{(x,y)}{|x|^2 + |y|^2}.$$

(2) Any isometry on \mathbf{H}^n is a product of the above 4 isometries.

Proof. The assertion (1) follows from a direct computation. We use

$$d\overline{x} = rac{dx}{r^2} - rac{2x}{r^3}dr, \quad d\overline{y} = rac{dy}{r^2} - rac{2y}{r^3}dr,$$

where $r^2 = x^2 + y^2$, $\overline{x} = x/r^2$, $\overline{y} = y/r^2$, to prove (d). The proof of the assertion (2) is in [15] pp. 21, 24.

Recall that the inversion with respect to the sphere $\{|x - x_0| = r\}$ is the map: $x \to r^2(x - x_0)/|x - x_0|^2 + x_0$. We give examples of the isometry in \mathbf{H}^2 and \mathbf{H}^3 , which can be proved by a straightforward computation.

1.2. \mathbf{H}^2 and linear fractional transformation. When n = 2, it is convenient to identify a point $(x, y) \in \mathbf{H}^2$ with the complex number z = x + iy. For a matrix

$$\gamma = \left(\begin{array}{cc} a & b \\ c & d \end{array}\right) \in SL(2, \mathbf{R}),$$