Chapter 9

Not well-posed results

9.1 Introduction

For the second order differential operator in \mathbb{R}^2 with real analytic coefficient $a(x_0, x_1) \ge 0$ defined near the origin

$$P = -D_0^2 + a(x_0, x_1)D_1^2$$

the Cauchy problem is C^{∞} well posed near the origin ([40]). Since then it has been conjectured that the Cauchy problem is C^{∞} well posed for any second order differential operator of divergence form with real analytic coefficients

$$Pu = -D_0^2 u + \sum_{i,j=1}^n D_{x_i}(a_{ij}(x)D_{x_j}u), \ a_{ij}(x) = a_{ji}(x)$$

where $a_{ij}(x)$ are real analytic and

$$\sum_{i,j=1}^{n} a_{ij}(x)\xi_i\xi_j \ge 0, \quad \forall \xi' = (\xi_1, ..., \xi_n) \in \mathbb{R}^n.$$

In Section 8.1 we have shown that the operator P_{mod} is of divergence form and hence this gives a counter example of the conjecture. In this chapter we show somewhat stronger assertion on the well-posedness of the Cauchy problem for P_{mod} , that is the Cauchy problem for $P_{mod} + Q$ is not $\gamma^{(s)}$ well posed for any s > 6 whatever the lower order term Q is. Recall that the coefficients of P_{mod} are not only real analytic but also polynomials. This is a quite unexpected fact. On the other hand note that the Cauchy problem for $P_{mod} + Q$ is $\gamma^{(s)}$ well posed for any $1 \le s \le 2$ and for any lower order term Q, which is a particular case of the general result proved in [9].

Let us consider again

(9.1.1)
$$P_{mod}(x,D) = -D_0^2 + 2x_1D_0D_2 + D_1^2 + x_1^3D_2^2$$

in \mathbb{R}^3 . Then we have