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(recall that z(ρ) is unique up to a multiple factor from (3.3.3) and hence propor-
tional to v) is given by mj(x, ξ) = 0 on ⌃ and the representation of p, in these
coordinates, contains the sum of m2

j . Then our expecting solution is assumed to
satisfy approximately the Hamilton system with hamiltonian p̃ obtained from p
removing the terms m2

j . We write down our Hamilton system supposing that mj

were unknowns. We look for a solution (x(s), ξ(s)) of the Hamilton system such
that ξ(s) = O(s−2), x′(s) = O(s−3) (x = (x0, x

′)) and mj(x(s), ξ(s)) = O(s−4).
To do so we repeat similar arguments in this section. We first transform thus
obtained system (mj are unknowns) to another system by the change of in-
dependent variable t = s−1 and suitable change of unknowns. The resulting
system is a coupled system of a system which has t = 0 as a singular point
of the first kind and a system which has t = 0 as a singular point of the sec-
ond kind. Here the singular point of the second kind comes from positive trace
(7.3.8). The main feature of the system is that all eigenvalues of the leading
term of the singular point of the second kind (the coefficient matrix of t−2) are
simple, pure imaginary and di↵erent from zero.

The resulting system looks like

(7.3.9)

8><
>:

�
t2

d

dt
− i⇤

�
u = −mtu + L1(t)v + Q1(t, u, v) + tR1(t, u, v) + tF1,

t
d

dt
v = −mv + Lu + L2(t)v + Q2(t, u, v) + tR2(t, u, v) + tF2

where Qj(t, u, v) and Rj(t, u, v) are C1 functions defined near (0, 0, 0) ∈ R ×
CN1 × CN2 such that (

|Qj(t, u, v)| ≤ B1j(|u|2 + |v|2),
|Rj(t, u, v)| ≤ B̃1j(|u| + |v|)

for (t, u, v) ∈ {|t| ≤ T} × {|u| ≤ CT} × {|v| ≤ CT} and L2(t) is a N2 × N2

square matrix and L1(t) and L (a constant matrix) are N1 × N2 and N2 × N1

matrices respectively which verifies

�Lj(t)�C([0,T ]), �tL′
j(t)�C([0,T ]) ≤ B.

Here ⇤ is a constant nonsingular real diagonal matrix

⇤ = diag(λ1, ..., λN1), λj ∈ R \ {0}.

Then we have

Theorem 7.3.1 If m ∈ R is sufficiently large then (7.3.9) has a solution (u, v)
such that u(0) = 0, v(0) = 0.

Chapter 8

Optimality of the Gevrey
index

8.1 Non solvability in C∞ and the Gevrey class

In this chapter we study the following model operator

(8.1.1) Pmod(x, D) = −D2
0 + 2x1D0Dn + D2

1 + x3
1D

2
n.

It is worthwhile to note that if we make the change of coordinates

yj = xj (0 ≤ j ≤ n − 1), yn = xn + x0x1

which preserves the initial plane x0 = const., the operator Pmod is written in
these coordinates as

Pmod = −D2
0 + (D1 + x0Dn)2 + (x1

√
1 + x1Dn)2 = −D2

0 + A2 + B2.

Here we have A∗ = A and B∗ = B while [D0, A] ∕= 0 and [A, B] ∕= 0.
Let us denote by p(x, ξ) the symbol of Pmod(x, D) then it is clear that

the double characteristic manifold near the double characteristic point ρ̄ =
(0, (0, ..., 0, 1)) ∈ R2(n+1) is given by

⌃ = {(x, ξ) ∈ R2(n+1) | ξ0 = 0, x1 = 0, ξ1 = 0}

and the localization of p at ρ ∈ ⌃ is given by p⇢(x, ξ) = −ξ2
0 + 2x1ξ0 + ξ2

1 . This
is just (2) in Theorem 2.3.1 with k = l = 1 where ξ1 and x1 is exchanged. Since
(x1, ξ1) �→ (ξ1,−x1) is a symplectic change of the coordinates system then we
see

Ker F 2
p (ρ) ∩ Im F 2

p (ρ) ∕= {0}, ρ ∈ ⌃.

The main feature of p is that the Hamilton flow Hp lands tangentially on ⌃.
Indeed the integral curve of Hp

ξ1 = −x2
0

4
, xn =

x5
0

8
, ξ0 = 0, ξ1 =

x3
0

8
, xj , ξj = constants, |x0| > 0
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