Chapter 8

Optimality of the Gevrey index

8.1 Non solvability in C^{∞} and the Gevrey class

In this chapter we study the following model operator

$$
\begin{equation*}
P_{\text {mod }}(x, D)=-D_{0}^{2}+2 x_{1} D_{0} D_{n}+D_{1}^{2}+x_{1}^{3} D_{n}^{2} . \tag{8.1.1}
\end{equation*}
$$

It is worthwhile to note that if we make the change of coordinates

$$
y_{j}=x_{j}(0 \leq j \leq n-1), \quad y_{n}=x_{n}+x_{0} x_{1}
$$

which preserves the initial plane $x_{0}=$ const., the operator $P_{\text {mod }}$ is written in these coordinates as

$$
P_{\text {mod }}=-D_{0}^{2}+\left(D_{1}+x_{0} D_{n}\right)^{2}+\left(x_{1} \sqrt{1+x_{1}} D_{n}\right)^{2}=-D_{0}^{2}+A^{2}+B^{2} .
$$

Here we have $A^{*}=A$ and $B^{*}=B$ while $\left[D_{0}, A\right] \neq 0$ and $[A, B] \neq 0$.
Let us denote by $p(x, \xi)$ the symbol of $P_{\text {mod }}(x, D)$ then it is clear that the double characteristic manifold near the double characteristic point $\bar{\rho}=$ $(0,(0, \ldots, 0,1)) \in \mathbb{R}^{2(n+1)}$ is given by

$$
\Sigma=\left\{(x, \xi) \in \mathbb{R}^{2(n+1)} \mid \xi_{0}=0, x_{1}=0, \xi_{1}=0\right\}
$$

and the localization of p at $\rho \in \Sigma$ is given by $p_{\rho}(x, \xi)=-\xi_{0}^{2}+2 x_{1} \xi_{0}+\xi_{1}^{2}$. This is just (2) in Theorem 2.3.1 with $k=l=1$ where ξ_{1} and x_{1} is exchanged. Since $\left(x_{1}, \xi_{1}\right) \mapsto\left(\xi_{1},-x_{1}\right)$ is a symplectic change of the coordinates system then we see

$$
\operatorname{Ker} F_{p}^{2}(\rho) \cap \operatorname{Im} F_{p}^{2}(\rho) \neq\{0\}, \quad \rho \in \Sigma
$$

The main feature of p is that the Hamilton flow H_{p} lands tangentially on Σ. Indeed the integral curve of H_{p}

$$
\xi_{1}=-\frac{x_{0}^{2}}{4}, x_{n}=\frac{x_{0}^{5}}{8}, \xi_{0}=0, \xi_{1}=\frac{x_{0}^{3}}{8}, x_{j}, \xi_{j}=\text { constants, }\left|x_{0}\right|>0
$$

