CHAPTER 11

Shift operators

In this chapter we study an integer shift of spectral parameters $\lambda_{j,\nu}$ of the Fuchsian equation $P_{\mathbf{m}}(\lambda)u=0$. Here $P_{\mathbf{m}}(\lambda)$ is the universal operator (cf. Theorem 6.14) corresponding to the spectral type $\mathbf{m}=(m_{j,\nu})_{\substack{j=0,\ldots,p\\\nu=1,\ldots,n_j}}$. For simplicity, we assume that \mathbf{m} is rigid in this chapter unless otherwise stated.

11.1. Construction of shift operators and contiguity relations

First we construct shift operators for general shifts.

DEFINITION 11.1. Fix a tuple of partitions $\mathbf{m} = (m_{j,\nu})_{\substack{j=0,\ldots,p\\\nu=1,\ldots,n_j}} \in \mathcal{P}_{p+1}^{(n)}$. Then a set of integers $(\epsilon_{j,\nu})_{\substack{j=0,\ldots,p\\\nu=1,\ldots,n_j}}$ parametrized by j and ν is called a *shift compatible* to \mathbf{m} if

(11.1)
$$\sum_{j=0}^{p} \sum_{\nu=1}^{n_j} \epsilon_{j,\nu} m_{j,\nu} = 0.$$

THEOREM 11.2 (shift operator). Fix a shift $(\epsilon_{j,\nu})$ compatible to $\mathbf{m} \in \mathcal{P}_{p+1}^{(n)}$. Then there is a shift operator $R_{\mathbf{m}}(\epsilon,\lambda) \in W[x] \otimes \mathbb{C}[\lambda_{j,\nu}]$ which gives a homomorphism of the equation $P_{\mathbf{m}}(\lambda')v = 0$ to $P_{\mathbf{m}}(\lambda)u = 0$ defined by $v = R_{\mathbf{m}}(\epsilon,\lambda)u$. Here the Riemann scheme of $P_{\mathbf{m}}(\lambda)$ is $\{\lambda_{\mathbf{m}}\} = \{[\lambda_{j,\nu}]_{(m_{j,\nu})}\}_{\substack{j=0,\ldots,p\\\nu=1,\ldots,n_j}}$ and that of $P_{\mathbf{m}}(\lambda')$ is $\{\lambda'_{\mathbf{m}}\}$ defined by $\lambda'_{j,\nu} = \lambda_{j,\nu} + \epsilon_{j,\nu}$. Moreover we may assume ord $R_{\mathbf{m}}(\epsilon,\lambda)$ ord \mathbf{m} and $R_{\mathbf{m}}(\epsilon,\lambda)$ never vanishes as a function of λ and then $R_{\mathbf{m}}(\epsilon,\lambda)$ is uniquely determined up to a constant multiple.

Putting

(11.2)
$$\tau = (\tau_{j,\nu})_{\substack{0 \le j \le p \\ 1 \le \nu \le n_j}} \quad with \quad \tau_{j,\nu} := (2 + (p-1)n)\delta_{j,0} - m_{j,\nu}$$

and $d = \operatorname{ord} R_{\mathbf{m}}(\epsilon, \lambda)$, we have

(11.3)
$$P_{\mathbf{m}}(\lambda + \epsilon)R_{\mathbf{m}}(\epsilon, \lambda) = (-1)^{d}R_{\mathbf{m}}(\epsilon, \tau - \lambda - \epsilon)^{*}P_{\mathbf{m}}(\lambda)$$

under the notation in Theorem 4.19 ii).

PROOF. We will prove the theorem by the induction on ord \mathbf{m} . The theorem is clear if ord $\mathbf{m} = 1$.

We may assume that \mathbf{m} is monotone. Then the reduction $\{\tilde{\lambda}_{\tilde{\mathbf{m}}}\}$ of the Riemann scheme is defined by (10.33). Hence putting

(11.4)
$$\begin{cases} \tilde{\epsilon}_1 = \epsilon_{0,1} + \dots + \epsilon_{p,1}, \\ \tilde{\epsilon}_{j,\nu} = \epsilon_{j,\nu} + ((-1)^{\delta_{j,0}} - \delta_{\nu,1})\tilde{\epsilon}_1 & (j = 0,\dots,p, \ \nu = 1,\dots,n_j), \end{cases}$$