CHAPTER 10

Reducibility

We examine the condition for the decomposition $P_{\mathbf{m}}=P_{\mathbf{m}^{\prime}} P_{\mathbf{m}^{\prime \prime}}$ of universal operators with or without fixing the characteristic exponents (cf. Theorem 4.19 i)), which implies the reducibility of the equation $P_{\mathbf{m}} u=0$. Note that the irreducibility of a Fuchsian differential equation equals the irreducibility of the monodromy of the equation and that it is kept under our reduction of the equation. In $\S 10.2$ we study the value of spectral parameters which makes the equation reducible and obtain Theorem 10.10. In particular we have a necessary and sufficient condition on characteristic exponents so that the monodromy of the solutions of the equation $P_{\mathbf{m}} u=0$ with a rigid spectral type \mathbf{m} is irreducible, which is given in Theorem 10.13.

10.1. Direct decompositions

For a realizable $(p+1)$-tuple $\mathbf{m} \in \mathcal{P}_{p+1}^{(n)}$, Theorem 6.14 gives the universal Fuchsian differential operator $P_{\mathbf{m}}\left(\lambda_{j, \nu}, g_{i}\right)$ with the Riemann scheme (4.15). Here g_{1}, \ldots, g_{N} are accessory parameters and $N=\operatorname{Ridx} \mathbf{m}$.

First suppose \mathbf{m} is basic. Choose positive numbers $n^{\prime}, n^{\prime \prime}, m_{j, 1}^{\prime}$ and $m_{j, 1}^{\prime \prime}$ such that

$$
\begin{gather*}
n=n^{\prime}+n^{\prime \prime}, \quad 0<m_{j, 1}^{\prime} \leq n^{\prime}, \quad 0<m_{j, 1}^{\prime \prime} \leq n^{\prime \prime} \\
m_{0,1}^{\prime}+\cdots+m_{p, 1}^{\prime} \leq(p-1) n^{\prime}, \quad m_{0,1}^{\prime \prime}+\cdots+m_{p, 1}^{\prime \prime} \leq(p-1) n^{\prime \prime} \tag{10.1}
\end{gather*}
$$

We choose other positive integers $m_{j, \nu}^{\prime}$ and $m_{j, \nu}^{\prime \prime}$ so that $\mathbf{m}^{\prime}=\left(m_{j, \nu}^{\prime}\right)$ and $\mathbf{m}^{\prime \prime}=$ $\left(m_{j, \nu}^{\prime \prime}\right)$ are monotone tuples of partitions of n^{\prime} and $n^{\prime \prime}$, respectively, and moreover

$$
\begin{equation*}
\mathbf{m}=\mathbf{m}^{\prime}+\mathbf{m}^{\prime \prime} \tag{10.2}
\end{equation*}
$$

Theorem 6.6 shows that \mathbf{m}^{\prime} and $\mathbf{m}^{\prime \prime}$ are realizable. If $\left\{\lambda_{j, \nu}\right\}$ satisfies the Fuchs relation

$$
\begin{equation*}
\sum_{j=0}^{p} \sum_{\nu=1}^{n_{j}} m_{j, \nu}^{\prime} \lambda_{j, \nu}=n^{\prime}-\frac{\mathrm{idx} \mathbf{m}^{\prime}}{2} \tag{10.3}
\end{equation*}
$$

for the Riemann scheme $\left\{\left[\lambda_{j, \nu}\right]_{\left(m_{j, \nu}^{\prime}\right)}\right\}$, Theorem 4.19 shows that the operators

$$
\begin{equation*}
P_{\mathbf{m}^{\prime \prime}}\left(\lambda_{j, \nu}+m_{j, \nu}^{\prime}-\delta_{j, 0}(p-1) n^{\prime}, g_{i}^{\prime \prime}\right) \cdot P_{\mathbf{m}^{\prime}}\left(\lambda_{j, \nu}, g_{i}^{\prime}\right) \tag{10.4}
\end{equation*}
$$

has the Riemann scheme $\left\{\left[\lambda_{j, \nu}\right]_{\left(m_{j, \nu}\right)}\right\}$. Hence the equation $P_{\mathbf{m}}\left(\lambda_{j, \nu}, g_{i}\right) u=0$ is not irreducible when the parameters take the values corresponding to (10.4).

In this section, we study the condition

$$
\begin{equation*}
\operatorname{Ridx} \mathbf{m}=\operatorname{Ridx} \mathbf{m}^{\prime}+\operatorname{Ridx} \mathbf{m}^{\prime \prime} \tag{10.5}
\end{equation*}
$$

for realizable tuples \mathbf{m}^{\prime} and $\mathbf{m}^{\prime \prime}$ with $\mathbf{m}=\mathbf{m}^{\prime}+\mathbf{m}^{\prime \prime}$. Under this condition the Fuchs relation (10.3) assures that the universal operator is reducible for any values of accessory parameters.

