
CHAPTER 7

A Kac-Moody root system

In this chapter we explain a correspondence between spectral types and roots
of a Kac-Moody root system. The correspondence was first introduced by Crawley-
Boevey [CB]. In §7.2 we study fundamental tuples through this correspondence.

7.1. Correspondence with a Kac-Moody root system

We review a Kac-Moody root system to describe the combinatorial structure of
middle convolutions on the spectral types. Its relation to Deligne-Simpson problem
is first clarified by [CB].

Let

(7.1) I := {0, (j, ν) ; j = 0, 1, . . . , ν = 1, 2, . . .}.
be a set of indices and let h be an infinite dimensional real vector space with the
set of basis Π, where

(7.2) Π = {αi ; i ∈ I} = {α0, αj,ν ; j = 0, 1, 2, . . . , ν = 1, 2, . . .}.
Put

I ′ := I \ {0}, Π′ := Π \ {α0},(7.3)

Q :=
∑
α∈Π

Zα ⊃ Q+ :=
∑
α∈Π

Z≥0α.(7.4)

We define an indefinite symmetric bilinear form on h by

(α|α) = 2 (α ∈ Π),

(α0|αj,ν) = −δν,1,

(αi,µ|αj,ν) =

{
0 (i ̸= j or |µ− ν| > 1),

−1 (i = j and |µ− ν| = 1).

α0�������� α1,1�������� α1,2�������� · · ·
α2,1��������III

III
α2,2�������� · · ·

α0,1��������
yyyyyy

α0,2�������� · · ·

α3,1��������88
88

88
88

α3,2�������� · · ·
00
00
00
00

))
))
))
)

(7.5)

The element of Π is called the simple root of a Kac-Moody root system and
the Weyl group W∞ of this Kac-Moody root system is generated by the simple
reflections si with i ∈ I. Here the reflection with respect to an element α ∈ h
satisfying (α|α) ̸= 0 is the linear transformation

(7.6) sα : h ∋ x 7→ x− 2
(x|α)
(α|α)

α ∈ h

and

(7.7) si = sαi for i ∈ I.
In particular si(x) = x− (αi|x)αi for i ∈ I and the subgroup of W∞ generated by
si for i ∈ I \ {0} is denoted by W ′

∞.
The Kac-Moody root system is determined by the set of simple roots Π and its

Weyl group W∞ and it is denoted by (Π,W∞).
Denoting σ(α0) = α0 and σ(αj,ν) = ασ(j),ν for σ ∈ S∞, we put

(7.8) W̃∞ := S∞ ⋉W∞,
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