Chapter 5

Topology of 2-orbifolds: 2-orbifold topological constructions

We now wish to concentrate on 2 -orbifolds to illustrate more concretely. In many cases, the theory is much easier to understand. Also, we study the topological constructions of 2-orbifolds. We will follow the papers [Choi and Goldman (2005); Scott (1983)].

We first classify smooth 2-orbifolds with possibly empty boundary up to diffeomorphisms. Next 1-dimensional suborbifolds are classified. We discuss the Euler characteristic and the Riemann-Hurwitz formula. We classify the bad orbifolds by discussing about the good, very good, and bad 2-orbifolds. (At present, we can do this for 2 -orbifolds only. For higher dimensions, these may not be appropriate terminologies even.)

In the rest of the chapter, we discuss topological cut-and-paste methods applicable to 2-orbifolds.

5.1 The properties of 2-orbifolds

Recall that the singular points of a two-dimensional orbifold fall into three types (See Figure 4.7):
(i) The mirror point: $\mathbb{R}^{2} / \mathbb{Z}_{2}$ where \mathbb{Z}_{2} acts by reflections on the y-axis.
(ii) The cone-points of order n : $\mathbb{R}^{2} / \mathbb{Z}_{n}$ where \mathbb{Z}_{n} acting by rotations by angles $2 \pi m / n$ for integers m.
(iii) The corner-reflector of order $n: \mathbb{R}^{2} / D_{n}$ where D_{n} is the dihedral group generated by reflections about two lines meeting at an angle π / n.

From this, we obtain that the underlying space of a 2-orbifold is a surface with corner.

The singular strata associated with conjugate local groups are as follows: a silvered point belongs to a 1-dimensional strata, called a silvered arc. The other types have isolated points as strata. Recall that boundary of a 2 -orbifold is a suborbifold. The silvered arc may have an end point in the boundary of the 2 orbifold and it may end in a corner-reflector of order ≥ 2 also but not at a cone-point

