Chapter 1

Coin tossing process

Throughout this monograph, the coin tossing process ${ }^{\dagger 1}$ plays a role of the model process of random number and pseudorandom number. This may sound very restrictive for applications, but it is not. Indeed, from a coin tossing process, any practical random variables and any stochastic processes can be constructed.

1.1 Borel's model of coin tossing process

To describe m coin tosses, we use a probability space $\left(\{0,1\}^{m}, 2^{\{0,1\}^{m}}, P_{m}\right)$, where 0 and 1 stand for Tails and Heads respectively, and P_{m} stands for the uniform probability measure on $\{0,1\}^{m}$;

$$
P_{m}(B):=\frac{\# B}{2^{m}}, \quad B \subset\{0,1\}^{m}\left(B \in 2^{\{0,1\}^{m}}\right) .
$$

But each time m changes, we must take another probability space, which is not only boring but also inconvenient when we consider limit theorems. It is a good idea to construct an infinite many coin tosses all at once on a suitable probability space. Following Borel's idea, we construct them all on the Lebesgue probability space.

Definition 1.1

1. Let \mathbb{T}^{1} be a 1 -dimensional torus, i.e., an additive group consisting of the unit interval $[0,1)$ with addition $(x+y) \bmod 1$. Let \mathcal{B} be a σ-algebra on $\mathbb{T}^{1}=[0,1)$ consisting of all the Borel measurable sets of it, \mathbb{P} be the Lebesgue measure. The triplet $\left(\mathbb{T}^{1}, \mathcal{B}, \mathbb{P}\right)$ is called the Lebesgue probability space. ${ }^{\dagger 2}$ Let $\left(\mathbb{T}^{k}, \mathcal{B}^{k}, \mathbb{P}^{k}\right)$ denote the k-fold direct product of $\left(\mathbb{T}^{1}, \mathcal{B}, \mathbb{P}\right)$, which is called the k-dimensional Lebesgue probability space.
2. Let $d_{i}(x) \in\{0,1\}$ denote the i-th digit of real $x \in \mathbb{T}^{1}$ in its dyadic expansion;

$$
\begin{equation*}
x=\sum_{i=1}^{\infty} d_{i}(x) 2^{-i}, \quad x \in \mathbb{T}^{1} \tag{1.1}
\end{equation*}
$$

[^0]
[^0]: ${ }^{\dagger 1}$ We call the fair coin tossing process simply the coin tossing process.
 ${ }^{\dagger}{ }^{2}$ We sometimes consider the completion of \mathcal{B} by \mathbb{P}, i.e., σ-algebra of all the Lebesgue measurable sets. But for numerical calculations, \mathcal{B} will do.

