Chapter 1

Coin tossing process

Throughout this monograph, the *coin tossing process*^{\dagger 1} plays a role of the model process of random number and pseudorandom number. This may sound very restrictive for applications, but it is not. Indeed, from a coin tossing process, any practical random variables and any stochastic processes can be constructed.

1.1 Borel's model of coin tossing process

To describe *m* coin tosses, we use a probability space $(\{0, 1\}^m, 2^{\{0,1\}^m}, P_m)$, where 0 and 1 stand for Tails and Heads respectively, and P_m stands for the uniform probability measure on $\{0, 1\}^m$;

$$P_m(B) := \frac{\#B}{2^m}, \quad B \subset \{0, 1\}^m \, (B \in 2^{\{0, 1\}^m}).$$

But each time *m* changes, we must take another probability space, which is not only boring but also inconvenient when we consider limit theorems. It is a good idea to construct an infinite many coin tosses all at once on a suitable probability space. Following Borel's idea, we construct them all on the Lebesgue probability space.

Definition 1.1

- Let T¹ be a 1-dimensional torus, i.e., an additive group consisting of the unit interval [0, 1) with addition (x + y) mod 1. Let B be a σ-algebra on T¹ = [0, 1) consisting of all the Borel measurable sets of it, P be the Lebesgue measure. The triplet (T¹, B, P) is called the *Lebesgue probability space*.^{†2} Let (T^k, B^k, P^k) denote the *k*-fold direct product of (T¹, B, P), which is called the *k*-dimensional Lebesgue probability space.
- 2. Let $d_i(x) \in \{0, 1\}$ denote the *i*-th digit of real $x \in \mathbb{T}^1$ in its dyadic expansion;

$$x = \sum_{i=1}^{\infty} d_i(x) 2^{-i}, \quad x \in \mathbb{T}^1,$$
(1.1)

^{†1}We call the *fair* coin tossing process simply the coin tossing process.

^{†2}We sometimes consider the completion of \mathcal{B} by \mathbb{P} , i.e., σ -algebra of all the Lebesgue measurable sets. But for numerical calculations, \mathcal{B} will do.