APPENDIX

Some Properties of Invariant Polynomials

Some common materials used in this article are presented in this appendix for completeness. Most of these can be found in Kobayashi–Nomizu [50] but they are modified by following the convention in Matsushima [58]. Differences appear in coefficients, for example, $\omega \wedge \eta = \frac{1}{p! q!} \operatorname{Alt}(\omega \otimes \eta)$ for a *p*-form ω and a *q*-form η , where Alt stands for the alternizer. Another example is the formula $d\omega(X,Y) =$ $X(\omega(Y)) - Y(\omega(X)) - \omega([X,Y]).$

Let G be a Lie group, and \mathfrak{g} its Lie algebra. We denote by $I^k(G)$ the set of invariant polynomials of degree k.

DEFINITION A.1. Let $f \in I^k(G)$ and let $\varphi_1, \ldots, \varphi_k$ be \mathfrak{g} -valued differential forms of degree q_1, \ldots, q_k , respectively. We define a $(q_1 + \cdots + q_k)$ -form $f(\varphi_1, \ldots, \varphi_k)$ as follows. Let $\{E_1, \ldots, E_r\}$ be a basis for \mathfrak{g} . Then, we can write $\varphi_i = \sum_{i=1}^r E_j \varphi_i^j$. We set

$$f(\varphi_1,\ldots,\varphi_k) = \sum_{j_1,\ldots,j_k=1}^r f(E_{j_1},\ldots,E_{j_k}) \varphi_1^{j_1} \wedge \cdots \wedge \varphi_k^{j_k}.$$

NOTATION A.2 (Chern convention). Let $f \in I^k(G)$ and let $\varphi_1, \ldots, \varphi_l$ be \mathfrak{g} -valued differential forms as above. If l < k, then we set

$$f(\varphi_1,\ldots,\varphi_l) = f(\varphi_1,\ldots,\varphi_{l-1},\overbrace{\varphi_l,\ldots,\varphi_l}^{k-l+1 \text{ times}}).$$

DEFINITION A.3. Let $f: \mathfrak{gl}(n; C) \to \mathbb{C}$ be a multilinear mapping invariant under the adjoint action. The polarization of f is the unique element \widehat{f} of $I^k(\mathrm{GL}(n; \mathbb{C}))$ such that

$$\widehat{f}(X, X, \dots, X) = f(X)$$