CHAPTER 6

Combable functions and ergodic theory

In this chapter we study quasimorphisms on hyperbolic groups, especially counting quasimorphisms, from a *computational* perspective. We introduce the class of *combable functions* (and the related classes of weakly combable and bicombable functions) on a hyperbolic group, and show that the Epstein–Fujiwara counting functions are bicombable.

Conversely, bicombable function satisfying certain natural conditions are shown to be quasimorphisms; thus quasimorphisms and bounded cohomology arise naturally in the study of automatic structures on hyperbolic groups, a fact which might at first glance seem surprising.

The (asymptotic) distribution of values of a combable function may be described very simply using stationary Markov chains. Consequently, we are able to derive a central limit theorem for the distribution of values of counting quasimorphisms on hyperbolic groups.

The main reference for this section is Calegari–Fujiwara [50], although Picaud [166] and Horsham–Sharp [113] are also relevant.

6.1. An example

6.1.1. Random walk on \mathbb{Z} .

DEFINITION 6.1. A sequence of integers $x = (x_0, x_1, \dots)$ is a *walk* on \mathbb{Z} if it satisfies the following two properties:

- (1) (initialization) $x_0 = 0$
- (2) (unit step) for all n > 0, there is an equality $|x_n x_{n-1}| = 1$

The length of a walk x is one less than the number of terms in the sequence x. So, for example, (0, 1, 2) has length 2, while (0, 1, 0, -1, -2) has length 4.

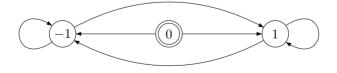


FIGURE 6.1. Walks on \mathbb{Z} of length n are in bijection with walks on Γ of length n.

Knowing the successive differences $x_n - x_{n-1} \in \{-1, 1\}$ determines x, so there is a bijection between walks of length n, and strings of length n in the alphabet