Chapter 1. On a remarkable σ -finite measure W on path space, which rules penalisations for linear Brownian motion

1.0 Introduction.

1.0.1 $(\Omega, (X_t, \mathcal{F}_t), t \ge 0, \mathcal{F}_{\infty}, W_x(x \in \mathbb{R}))$ denotes the canonical realisation of 1-dimensional Brownian motion. $\Omega = \mathcal{C}(\mathbb{R}_+ \to \mathbb{R}), (X_t, t \ge 0)$ is the coordinate process on this space and $(\mathcal{F}_t, t \ge 0)$ denotes its natural filtration ; $\mathcal{F}_{\infty} = \bigvee_{t\ge 0} \mathcal{F}_t$. For every $x \in \mathbb{R}, W_x$ denotes Wiener measure on $(\Omega, \mathcal{F}_{\infty})$ such that $W_x(X_0 = x) = 1$. We write W for W_0 and if Z is a r.v. defined on $(\Omega, \mathcal{F}_{\infty})$, we write $W_x(Z)$ for the expectation of Z under the probability W_x .

1.0.2 In a series of papers ([RVY, i], $i = I, II, \dots, X$) we have studied various penalisations of Wiener measure with certain positive functionals $(F_t, t \ge 0)$; that is for each functional $(F_t, t \ge 0)$ in a certain class, we have been able to show the existence of a probability W_{∞}^F on $(\Omega, \mathcal{F}_{\infty})$ such that : for every $s \ge 0$ and every $\Gamma_s \in b(\mathcal{F}_s)$, the space of bounded \mathcal{F}_s measurable variables :

$$\lim_{t \to \infty} \frac{W(\Gamma_s F_t)}{W(F_t)} = W^F_{\infty}(\Gamma_s)$$
(1.0.1)

In this paper, we shall construct a positive and σ -finite measure **W** on $(\Omega, \mathcal{F}_{\infty})$ which, in some sense, "rules all these penalisations jointly".

1.0.3 In Section 1.1 of this chapter, we show the existence of \mathbf{W} and we describe some of its properties.

In Section 1.2, we show how to associate to **W** a family of $((\mathcal{F}_t, t \ge 0), W)$ martingales $(M_t(F), t \ge 0)$ $(F \in L^1_+(\mathcal{F}_\infty, \mathbf{W}))$. We study the properties of these martingales and give many examples.

In Section 1.3, we describe links between \mathbf{W} and a σ -finite measure Λ which is defined as the "law" of the total local time of the canonical process under \mathbf{W} in Chapter 3 of [RY, M]. In particular, we construct an invariant measure $\widetilde{\Lambda}$ for the Markov process $((X_t, L_t^{\bullet}), t \geq 0)$ (and $\widetilde{\Lambda}$ is intimately related to Λ). Here, L_t^{\bullet} denotes the local times process $(L_t^x, x \in \mathbb{R}_+)$, so that this Markov process (X, L^{\bullet}) takes values in $\mathbb{R} \times \mathcal{C}(\mathbb{R} \longrightarrow \mathbb{R}_+)$.

1.0.4 <u>Notations</u>: As certain σ -finite measures play a prominent role in our paper, we write them, as a rule, in bold characters. Thus, no confusion should arise between the σ -finite measure \mathbf{W}_x and the Wiener measure W_x .

1.1 Existence of W and first properties.

Our aim in this section is to define, via Feynman-Kac type penalisations, a positive and σ -finite measure **W** on $(\Omega, \mathcal{F}_{\infty})$. Moreover, independently from this penalisation procedure, we give several remarkable descriptions of **W**.

1.1.1 <u>A few more notations.</u>

 $(\Omega, (X_t, \mathcal{F}_t)_{t \ge 0}, \mathcal{F}_{\infty}, W_x(x \in \mathbb{R}))$ denotes the canonical realisation of 1-dimensional Brownian motion.

We denote by \mathcal{I} the set of positive Radon measures q(dx) on \mathbb{R} , such that :

$$0 < \int_{0}^{\infty} (1 + |x|) q(dx) < \infty$$
 (1.1.1)

For every $q \in \mathcal{I}$, $(A_t^{(q)}, t \ge 0)$ denotes the additive functional defined by :

$$A_t^{(q)} := \int_{\mathbb{R}} L_t^y \, q(dy)$$
 (1.1.2)