CHAPTER 4

Part 1. Examples of Γ.

In Part 1 of this chapter, we shall give some examples of Γ. They are obtained from quaternion algebras A over totally real algebraic number fields F; and up to commensurability, they are the only examples of Γ that we know at present. We shall also prove that if L is a quasi-irreducible G_{p}-field over \mathbf{C} such that the corresponding discrete subgroup is commensurable with one obtained from a quaternion algebra A over F, then the field k_{0} (defined by Theorem 5 of Chapter 2) contains F (see Theorem 1, §5).

Examples of Γ.

§1. Quaternion algebra. By a quaternion algebra over a field F, we mean a simple algebra A with center F and with $[A: F]=4$. The simplest example is $A=M_{2}(F)$, and all other quaternion algebras are division algebras. In the following, we shall make no distinction between two quaternion algebras over F which are isomorphic over F. If F is algebraically closed (e.g., if $F=\mathbf{C}$), then $A=M_{2}(F)$ is the only quaternion algebra over F. If $F=\mathbf{R}$ or $F=k_{\mathfrak{p}}$ (\mathfrak{p}-adic number field), then there is a unique division quaternion algebra over F, which will be denoted by $D_{\mathbf{R}}$ or $D_{\mathfrak{p}}$ respectively.

Now let F be an algebraic number field, and let \mathfrak{p} be a prime divisor (finite or infinite) of F. Denote by $F_{\mathfrak{p}}$ the \mathfrak{p}-adic completion of F, so that either $F_{\mathfrak{p}} \cong \mathbf{C}$, or $F_{\mathfrak{p}} \cong \mathbf{R}$, or F_{p} is a \mathfrak{p}-adic number field. For each quaternion algebra A over F, put $A_{\mathrm{p}}=A \otimes_{F} F_{\mathrm{p}}$; hence $A_{\mathfrak{p}}$ is a quaternion algebra over $F_{\mathfrak{p}}$. Therefore, if $F_{\mathfrak{p}} \cong \mathbf{C}, A_{\mathfrak{p}}$ must be $M_{2}(\mathbf{C})$, and if $F_{\mathfrak{p}} \neq \mathbf{C}$, then there are two possibilities for A_{p}; namely, $M_{2}\left(F_{p}\right)$ or D_{p} (or $D_{\mathbf{R}}$ if $F_{p} \cong \mathbf{R}$). A prime divisor \mathfrak{p} of F is called unramified in A if $A_{\mathfrak{p}} \cong M_{2}\left(F_{\mathfrak{p}}\right)$ holds, and ramified if $A_{\mathfrak{p}} \neq M_{2}\left(F_{\mathfrak{p}}\right)$. Denote by $\delta(A)$ the set of all prime divisors of F which are ramified in A. Then it is well-known that $\delta(A)$ is finite and that its cardinal number is even. Conversely, if δ is any finite set of prime divisors of F not containing complex prime divisors and having even cardinal number, then there exists a quaternion algebra A over F, unique up to an isomorphism over F, such that $\delta=\delta(A)$;

