CHAPTER 4

Part 1. Examples of Γ .

In Part 1 of this chapter, we shall give some examples of Γ . They are obtained from quaternion algebras A over totally real algebraic number fields F; and up to commensurability, they are the only examples of Γ that we know at present. We shall also prove that if L is a quasi-irreducible G_p -field over C such that the corresponding discrete subgroup is commensurable with one obtained from a quaternion algebra A over F, then the field k_0 (defined by Theorem 5 of Chapter 2) contains F (see Theorem 1, §5).

Examples of Γ .

§1. Quaternion algebra. By a quaternion algebra over a field F, we mean a simple algebra A with center F and with [A : F] = 4. The simplest example is $A = M_2(F)$, and all other quaternion algebras are division algebras. In the following, we shall make no distinction between two quaternion algebras over F which are isomorphic over F. If F is algebraically closed (e.g., if F = C), then $A = M_2(F)$ is the only quaternion algebra over F. If $F = \mathbf{R}$ or $F = k_p$ (p-adic number field), then there is a *unique* division quaternion algebra over F, which will be denoted by $D_{\mathbf{R}}$ or D_p respectively.

Now let F be an algebraic number field, and let p be a prime divisor (finite or infinite) of F. Denote by F_p the p-adic completion of F, so that either $F_p \cong \mathbf{C}$, or $F_p \cong \mathbf{R}$, or F_p is a p-adic number field. For each quaternion algebra A over F, put $A_p = A \otimes_F F_p$; hence A_p is a quaternion algebra over F_p . Therefore, if $F_p \cong \mathbf{C}$, A_p must be $M_2(\mathbf{C})$, and if $F_p \neq \mathbf{C}$, then there are two possibilities for A_p ; namely, $M_2(F_p)$ or D_p (or $D_{\mathbf{R}}$ if $F_p \cong \mathbf{R}$). A prime divisor p of F is called *unramified* in A if $A_p \cong M_2(F_p)$ holds, and *ramified* if $A_p \not\cong M_2(F_p)$. Denote by $\delta(A)$ the set of all prime divisors of F which are ramified in A. Then it is well-known that $\delta(A)$ is finite and that its cardinal number is even. Conversely, if δ is any finite set of prime divisors of F not containing complex prime divisors and having even cardinal number, then there exists a quaternion algebra A over F, unique up to an isomorphism over F, such that $\delta = \delta(A)$;